
A Novel Intensity Based Optical Proximity

Correction Algorithm with Speedup in Lithography

Simulation

Peng Yu and David Z. Pan

The Department of Electrical and Computer Engineering

The University of Texas at Austin

Email: yupeng@cerc.utexas.edu and dpan@ece.utexas.edu

Abstract—It is important to reduce the Optical Proximity Cor-
rection (OPC) runtime while maintaining a good result quality. In
this paper, we obtain a better formula, which theoretically speeds
up the widely used method, Optimal Coherent Approximations
(OCA’s), by a factor of 2×. We speed up the OPC algorithm
further by making it intensity based (IB-OPC), because it re-
quires much less intensity simulations than the conventional Edge
Placement Error (EPE) based OPC algorithms. In addition, the
IB-OPC algorithm, which uses the efficiently computed sensitivity
information, converges faster than the EPE based OPC. Our IB-
OPC experimental results show a runtime speedup of up to 15×

with a comparable result quality as of the EPE based OPC.

I. INTRODUCTION

Optical Proximity Correction (OPC) algorithm modifies

mask shapes to compensate the optical proximity effect due to

the subwavelength lithography printing. The OPC algorithms

can be classified as polygon based OPC [1] and pixel based

inverse lithography [2]. We consider the first category in this

paper, since it is the widely adopted method in the industry.

All the existing published polygon based OPC algorithms

are based on Edge Placement Error (EPE) [1], which stands

for the difference between the printed contour and the tar-

get contour. The simple EPE based OPC algorithm [1] has

been later improved using Mask Error Enhancement Matrix

(MEEM) [3], where MEEM is the EPE sensitivity matrix with

respect to changes in mask shapes.

It is well known that OPC is a very time consuming process,

which could take days. Slow OPC runtime can affect the

turnaround-time (TAT) adversely. Therefore, it is important

to reduce OPC runtime while maintaining a good OPC result

quality.

The runtime is conventionally improved from two aspects.

The first is from fine tuning the OPC algorithms, the OPC

algorithm parameters, and the recipes (e.g. segmentation and

tagging). A few new convergence schemes were proposed

to improve the convergence rate [4]. A neural network was

proposed to give a better initial guess which results in lower

number of OPC iterations [5]. The runtime implications of

some OPC parameters have been shown in [6], which pointed

out the potential trade-off between various parameters for run-

time. Optimized multi OPC recipes have also been proposed

for SoC applications to reduce runtime and improve OPC

accuracy [7].

The second is from parallel computation and dedicated hard-

ware. Multiprocessing and multithreading have been used for

OPC on linux workstation clusters [8]. A hardware-accelerated

computational lithography platform have also been built [9].

IBM has developed software for IC design and DFM software

with the IBM’s BlueGene supercomputer [10].

However, none of the above approaches have fundamentally

improved the lithography modeling nor the OPC algorithm

itself. In this paper, we improve the OPC runtime in both

of these aspects. We found that the widely used Optimal

Coherent Approximations (OCA’s) formulation [11] can be

simplified by using the symmetric properties of the lithography

imaging systems, which gives us a runtime speedup of up

to 2× without any loss in accuracy. We also observe that
making the intensity on the target contour equal the intensity

threshold is the equivalent of making EPE zero. Based on this

observation, we propose an intensity based OPC algorithm,

which is demonstrated be faster than the EPE based method,

because it requires less intensity simulation, which takes the

majority of the OPC runtime.

The main contributions of this paper are as follows:

• We derive a formula which could reduce the simulation
runtime by 2× without any accuracy loss, by using the
symmetric properties in the lithography systems.

• Our intensity based OPC (IB-OPC) algorithm using the
sensitivity information converges faster than the conven-

tional EPE based method.

• We provide an efficient method for the intensity sensitiv-
ity computation.

• The IB-OPC algorithm achieves a significant runtime
speedup, while maintaining the OPC result quality.

The rest of this paper is organized as follows. In Section II,

we review the lithography imaging model and show our new

simulation formula. In Section III, we review the segmentation

of masks into the parametrized representation and describe the

fast intensity sensitivity computation. Section IV shows the IB-

OPC formulation and the algorithm, a variant of the Newton

method, which uses the intensity sensitivity information. Sec-

tion V shows the experimental results. Section VI concludes

this paper.

1-4244-1382-6/07/$25.00 ©2007 IEEE 854

II. SPEEDUP IN LITHOGRAPHY IMAGING SIMULATION

We first review the lithography imaging model and then

show an improved simulation formula by using some com-

mon lithography system symmetric properties. The speedup is

justified for practical cases with errors.

A. Lithography Imaging — Hopkins Equation

The latent image intensity in the photoresist, commonly

treated 2-dimensionally by phenomenological models in OPC

softwares, is given by the Hopkins equation [12],

I(k; z) =

∫∫

T(k + k′, k′; z)F(k + k′)F∗(k′)d2k′. (1)

F(k) is the mask transmission function F (r) in the frequency
domain, where k denotes a point in the frequency domain and

r denotes a point in the spatial domain. I(k; z) is the chemical
latent image in the frequency domain at z defocus. T(k, k′; z)
is the transmission cross coefficient (TCC), given by

T(k′, k′′; z) = G(k′ − k′′)

×

∫∫

J
−
O(k)K(k + k′; z)K∗(k + k′′; z)d2k,

(2)

The meaning of the symbols are described below:

• G(k) is the diffusion kernel, written as

G(k) = e−2π2d2k2

, (3)

which corresponds the diffusion of the latent image

during the post-exposure-bake (PEB), where d is the
diffusion length and k = |k|.

• J
−
O(k) is the illumination function. We illustrate some
commonly used ones in Figure 1.

Figure 1. Commonly used illumination schemes. The radii of the outer

circles are 1. J−
O
is a constant over the gray regions.

• K(k; z) is the projection system transfer function. As-
suming a circular pupil, K(k; z) can be written as

K(k; z) =

{

ei2πz
√

1−k2

k < 1
0 otherwise

. (4)

• The superscript ∗ denotes the complex conjugation oper-
ation.

B. Improving the Simulation Speed Using Symmetries

It is well known that

G(k) ∈ R, J
−
O(k) ∈ R and K(k) ∈ C, (5)

where R is the set of all real numbers and C is the set of all

complex numbers. This is confirmed in (3), Figure 1 and (4).

In addition, we have Property 1, which is true not neces-

sarily only to the forms in (3), Figure 1 and (4).

Property 1.

G(k) = G(−k), (6)

J
−
O(k) = J

−
O(−k), (7)

K(k) = K(−k). (8)

Remark. (6) is true if the diffusion is rotational invariant. (7)

is true as long as the symmetrical illumination schemes are

used (not necessary limited to the ones in Figure 1. (8) is true

as long as there are no odd order aberrations.

With the Property 1, we can prove the following property

of TCC.

Property 2.

T(k′, k′′) = T(−k′,−k′′). (9)

Using Property 2 and the fact

T(k′, k′′) = T
∗(k′′, k′), (10)

we have

T(k′, k′′) = T∗(−k′′,−k′). (11)

Therefore, TCC’s real and imaginary parts satisfy

Treal(k
′, k′′) = Treal(−k′′,−k′) (12)

and

Timag(k
′, k′′) = −Timag(−k′′,−k′). (13)

By using the fact that the mask transmission function F (r)
is real for commonly used masks, such as binary mask (BIM)

or phase shift mask (PSM) with the phases of 0◦ and 180◦,
we can easily obtain the following property of F(k).

Property 3.

F(k) = F
∗(−k). (14)

By using (13) and Property 3, we can prove that Timag

does not contribute to the image and we have the following

Theorem.

Theorem 1. The aerial image can be computed by the

Reduced Hopkins Equation,

I(k) =

∫∫

Treal(k + k′, k′)F(k + k′)F∗(k′)d2k′. (15)

It has been derived from (1) that the image can be computed

by

I(r) =

p′−1
∑

n=0

σn

∣

∣Q′
n ∗∗F

∣

∣

2
, (16)

855

where ∗∗ is the convolution operator and Q′
n’s (called kernels)

are complex functions [13]. Using Property 2 and Theorem 1,

we can get a similar formula without | · |,

I(r) =

p−1
∑

n=0

σn(Qn ∗∗F)2, (17)

where Qn’s are real functions. Note that (17) can not be

derived directly from (1) in general, because T does not satisfy

T(k′, k′′) = T(−k′′,−k′) (18)

in general. The choices of p and p′ are determined by the
error requirements. With the same error requirements, it can

be proved that (17) gives us a 2× speedup when there are no
aberrations (p = p′ in this case).

C. Considering Errors in Practice

Practically, there are always errors in lithography imaging

system, which may make Property 1 not valid. But we can

separate T(k′, k′′) into two parts as

T(k′, k′′) = Tsym(k
′, k′′) + Tanti(k

′, k′′), (19)

where

Tsym(k
′, k′′) =

T(k′, k′′) + T(−k′,−k′′)

2
(20)

and

Tanti(k
′, k′′) =

T(k′, k′′)− T(−k
′,−k

′′)

2
. (21)

Similar to Theorem 1, we only need the real part of

Tsym(k
′, k′′) and the imaginary part of Tanti(k

′, k′′) for the
computation of I(k).
By saying the errors are small, we mean that approximately

the same number of terms (p) is needed to decompose both
T and Tsym,real and we need q (q ≪ p) terms to decompose
Tanti,imag. Therefore, the runtime speedup is still

p
p
2 + q

2

≈
q≪p

2. (22)

III. SEGMENTATION AND LOOKUP-TABLE METHOD FOR

INTENSITY SENSITIVITY COMPUTATION

In this section, we first review how the mask shapes are

segmented and manipulated by OPC algorithm. We then derive

a direct and fast way to compute the intensity sensitivity with

respect to shape changes, which will be used to compute D

in Section IV.

There are usually only polygons in designs. In this work, we

only consider rectilinear polygons, which have only horizontal

and vertical edges. Our method can be extended to handle

polygons with edges in other directions (e.g. 45◦). The poly-
gon edges are usually broken into smaller parts (Figure 2(a)),

called segments, which can be shifted by OPC algorithms

(Figure 2(b)).

The image intensity can be computed using the conven-

tional table lookup based method [14, 15]. A naive way of

intensity sensitivity computation is to perturb the mask shapes

a little and resimulate the intensity. The intensity change is

(a) (b)

Figure 2. (a) The edges of a rectilinear polygon is segmented. (b) The
segments can be shifted by OPC algorithms.

proportional to the intensity sensitivity. However, this method

requires two intensity simulations, which is slow. We show

below an intelligent way for faster sensitivity simulations.

Suppose the i-th segment is in x-direction (the y-direction
can be discussed similarly). The sensitivity of the image

intensity with respect to the shift of the i-th segment can be
derived from (17) as

∂I

∂di

=

p−1
∑

n=0

2σn(Qn ∗∗F)

× (Qn ∗∗ boxcar(x; ai, bi)δ(y − (yi + di))), (23)

where boxcar(·; ·, ·) is the boxcar function

boxcar(x; a, b) =

{

1, if a 6 x and x 6 b
0, otherwise,

(24)

δ(·) is the Dirac delta function, ai and bi denote the x
coordinates of the two ends of the i-th segment, and di denotes

the segment shift.

The conventional lookup table method [14, 15] can be used

to compute (Qn∗∗F) since the convolution is a linear operator.
By using the same property, we can construct another table to

compute Qn ∗∗ boxcar(x; ai, bi)δ(y− (yi + di)). In this case,
only two table lookups (for the point (x, ai) and the point
(x, bi)) are needed to compute the convolution.
We compare the runtime complexity of this new method

with the naive method, which computes the intensities twice.

Suppose we need to lookup the table for M times to compute

the intensity. Using the naive method, we need 2M table

lookups to get the intensity sensitivity. However, we only need

2 + M table lookups to get the sensitivity in the intelligent

method. Usually M is much bigger than 2. Therefore, we get
a speed up of 2× using the new method.

IV. INTENSITY BASED OPC ALGORITHM

A. Problem Formulation

The EPE based OPC tries to make EPE zero. However, the

computation of EPE is expensive. In Figure 3, to compute the

EPE near the tag point A, we need to simulate on the dots
to find the printed contour. It may require many simulations

before the contour is found. It may also need many simulations

to know that the contour can not be found.

Figure 4 shows that it is equivalent to make EPE zero and

to make the intensity at the target the same as the intensity

threshold. This criterion enables us to simulate intensities at

much less number of points (only on the tag point A in the

856

A

Figure 3. EPE computation requires many intensity simulations. The box is
the target shape. To find the printed contour near the tag point A, we may
need to simulate on many points.

example in Figure 3). And we have the follow OPC problem

formulation.

Image Intensity

Ith

target

}

EPE

}

Intensity difference

Figure 4. EPE is zero if and only if there is no intensity difference.

Formulation 1 (Intensity Based OPC Fomulation). Intensity

Based OPC Algorithm tries to match the intensity on the target

with the intensity threshold.

Note that this formulation is very general — the intensity

threshold is not necessarily a constant. In this paper, we

demonstrate the key idea for the constant threshold model.

Suppose there are N segments, which means the mask

has freedom of degree N . We need exactly N constraints to
uniquely solve the shifts of the N segment vectors. We choose
N tag points on the target contour, where the intensity shall
match the threshold. There are many tagging strategies. In this

work, we tag the central point of each segment.

Let us number the tagging points and the segments from 1
to N . Ii denote the image intensity at the i-th tag point. The
threshold at the i-th tag point is denoted as Ithi. Therefore,
the mathematical formulation of IB-OPC is

Ii(d1, d2, . . . , dN) = Ithi i = 1, 2, . . . , N. (25)

Note that all Ithi equal to a single constant for the constant
threshold model.

The system of equations (25) can be written compactly in

the vector form as

A(x) = b (26)

where x denotes the entire vector of values di, A denotes the

entire vector of function Ii and b denotes the entire vector of

values Ithi.

B. The Algorithm

In order to solve the nonlinear system of equations (26), we

adapt the Newton method discussed in [16] and modify it to

fit our particular problem.

Suppose x is close enough to the solution to (26) and A(x)
can be Taylor expanded in the neighborhood of x as

A(x + δx) = A(x) + J · δx + O(δx2), (27)

where J is the Jacobian matrix of A at x. By neglecting the

second and higher order terms in (27) and settingA(x+δx) =
b, we can solve the correction term δx from

J · δx = −A(x) + b. (28)

The solution δx of (28) shall be applied to x to approximate

a better solution to (26). This process shall be repeated until

converge. Since we do not need the exact value of δx in
the iteration, we could approximate J by a diagonal matrix

D whose diagonal terms are the same as those of J . This

approximation is valid since J is usually diagonal dominant

in OPC applications. We end up with solving the following

system of equations instead

D · δx = −A(x) + b. (29)

SinceD is a diagonal matrix, δx can be solved easily in (29).
And this diagonal approximation also saves us from computing

the full Jacobian matrix J .

It is intuitive to add the correction δx to x as

xnew = xold + δx, (30)

and to iterating until it converges. However, this method would

not converge if the initial guess is not sufficiently close to

the solution. In current OPC algorithms, the initial guess is

usually chosen to be x = 0, which could be far away from

the solution. Therefore, we need to make our solution scheme

converge globally even if the initial guess is far from the

solution.

A reasonable strategy is to go to some point xnew

xnew = xold + λp, 0 6 λ 6 1 (31)

along the direction of p = δx and to require f = 1
2F · F

always decrease, where F (x) ≡ A(x) − b and the factor
1
2 is for later convenience. We will show below how to

approximately find λ so that f(xold + λp) decreases.
Let us define

g(λ) = f(xold + λp). (32)

We want to find an approximate minimum of g(λ) (0 6 λ 6

1). We could approximate g(λ) as a parabola, which requires
three parameters to be uniquely determined. We could choose

g(0), g(1/2) and g(1). But it need the additional evaluation
of F for λ = 1/2. To make the iteration faster, we replace it
by g′(0), which does not need an additional evaluation of F

as we shall show below.

The derivative of g(λ) is

g′(λ) = ∇f · p = (F · J) · (−D−1 · F). (33)

Since we only need a fast estimate of g′(0), we again approx-
imate J as D and get

g′(λ) ≈ −F · F . (34)

857

Therefore, we have

g′(0) = −2g(0), (35)

which does not require an additional evaluation of F .

With g(0), g′(0) and g(1) available, we model g(λ) as a
parabola:

g(λ) ≈ (g(1)− g(0)− g′(0))λ2 + g′(0)λ + g(0) (36)

We can easily find that its minimum is taken at

λmin = −
g′(0)

2(g(1)− g(0)− g′(0))
=

g(0)

g(0) + g(1)
. (37)

Since we have made many approximations, we eventually need

to check that g(λmin) is indeed less than g(0). Otherwise, we
do not accept it and the algorithm stops.

We list the IB-OPC algorithm in Algorithm 1 for complete-

ness. This algorithm is fast for four reasons:

1) It employs our new improved lithography simulation

formula (17).

2) It is intensity based, which require much less inten-

sity simulation compared with conventional EPE based

method.

3) The intelligent sensitivity computation method enables

it to compute D fast.

4) Newton method makes the algorithm converge in less

number of iterations.

Algorithm 1 IB-OPC algorithm

1: function IB-OPC

2: x0 ← 0 // initial mask equals target

3: i← 0
4: repeat

5: p←D(xi)
−1 · (−A(xi) + b)

6: Compute g(0) and g(1) using (32)

7: λmin ←
g(0)

g(0)+g(1)

8: if g(λmin) > g(0) then break

9: xi+1 ← xi + λminp
10: i← i + 1
11: until xi = xi−1 // stop if nothing changes

V. EXPERIMENTAL RESULTS

We implemented two versions of lithography simulators

based on the old formula (16) and the new formula (17),

respectively. And we implemented our IB-OPC algorithm. For

comparison, we also implemented the current EPE based OPC

algorithm (see Section 2 in [3]) and we set its parameter

C = 3.33. All the implementations were in C++.
The following experiments were performed on a 2.8GHz
Pentinum-4 Linux machine. We used 1 nm mask grid size

(scaled to wafer). We used the conventional partially coherent

illumination with σ = 0.7, the numerical aperture NA = 0.8,
the wavelength λ = 193nm. We used 6 kernels with the
interaction radius of 600nm. The intensity threshold was
0.15. The four test patterns are compatible with the 65 nm

technology poly layer design rules. The comparison of the

OPC results and the runtimes are shown in Table I.

“# EPE” denotes the total number of EPEs that we measured

(i.e., the number of tag points). “# iter” denotes the number

of iterations. “RT slow” denotes the OPC runtime using (16).

“RT” denotes the OPC runtime using (17). “RT per iter”

denotes how much runtime each iteration takes. “µ|EPE|”
denotes the average of the EPE absolute value (post OPC).
“σ|EPE|” denotes the standard deviation of the EPE absolute
value (post OPC). The runtime improvement can be separated

into three parts as

Total improvement

= Improvement due to (17)

× Improvement due to the intensity based method

× Improvement on the number of iterations. (38)

The three factors on the right hand side of (38) and the left

hand side of (38) are shown in the last four columns in Table I,

respectively. “Average” denotes the averages over the four test

cases for the appropriate quantities explained above. We tried

both 100 nm and 50 nm segment lengths.
As we can see from the table. The runtime improvement

due to the new lithography simulation formula (17) is about

1.5, which is less than the theoretical speedup of 2×. This
is because not all the runtime is taken by the arithmetic

operations in (16) or (17). The use of (17) only improves

the arithmetic operation runtime by 2×. Simulating only
intensities give us an additional speedup of about 2.8. The
reductions in the number of iterations due to the Newton

method are 1.44× for 100nm segment lengths and 3.28×
for 50 nm segment length. As the segment length goes down,
we can see the number of iterations increases much more in

the EPE based algorithm than in IB-OPC. The total runtime

speedup from IB-OPC can be up to 15.0× for 50 nm segment
length, which is a significant improvement. As technology

scales down, we would expect the segment length be even

smaller, in which case IB-OPC could give even more runtime

improvement compared with the EPE-based OPC.

In addition, we clearly see that IB-OPC results are compara-

ble with the EPE based OPC results. In fact, IB-OPC reduces

average EPE error for both segment lengths, and reduces EPE

standard deviation for 100nm segment length, although it

increases the standard deviation of |EPE| a little for 50 nm
segment length.

VI. CONCLUSIONS

We have derived a new formula for the lithography sim-

ulation, which gives 2× runtime speedup over the OCA’s.
The derivations are based on the symmetric properties of

the lithography imaging systems. Conventional OPC algo-

rithms are EPE based, which require many image intensity

simulations. To reduce runtime, we have proposed the first

intensity based OPC algorithm, which requires much less

intensity simulations. The algorithm is further speeded up by

a variant of the Newton method for fast convergence, which

858

Table I
OPC RESULTS AND RUNTIMES COMPARISON

100 nm segment length

Case # # EPE
EPE based OPC IB-OPC

RT Impr
sym (×)

RT Impr
per iter
(×)

Iter
Impr
(×)

Total RT
Impr (×)# iter

RT
slow(s)

RT(s)
RT per
iter (s)

µ|EPE|

(nm)

σ|EPE|

(nm)
iter RT(s)

RT per
iter (s)

µ|EPE|

(nm)

σ|EPE|

(nm)
1 77 16 0.72 0.47 0.029 1.81 0.96 12 0.14 0.013 0.91 0.68 1.53 2.3 1.33 5.2

2 105 16 1.24 0.83 0.052 1.83 0.95 11 0.19 0.016 0.98 0.76 1.49 3.3 1.45 6.5

3 88 16 0.81 0.54 0.034 1.78 0.91 12 0.14 0.013 0.77 0.64 1.50 2.7 1.33 5.8

4 119 18 1.54 1.03 0.057 1.71 1.00 11 0.23 0.019 1.05 0.82 1.50 3.0 1.64 6.7

Average @
@

@
@

@
@

@
@

1.78 0.96 @
@

@
@

@
@

0.93 0.72 1.50 2.8 1.44 6.0

50 nm segment length

Case # # EPE
EPE based OPC IB-OPC

RT Impr
sym (×)

RT Impr
per iter
(×)

Iter
Impr
(×)

Total RT
Impr (×)# iter

RT
slow(s)

RT(s)
RT per
iter (s)

µ|EPE|

(nm)

σ|EPE|

(nm)
iter RT(s)

RT per
iter (s)

µ|EPE|

(nm)

σ|EPE|

(nm)
1 153 51 8.32 5.27 0.103 1.66 1.00 16 0.62 0.039 1.33 1.11 1.58 2.7 3.19 13.4

2 209 49 13.90 8.60 0.175 1.69 1.04 15 0.97 0.065 1.53 1.32 1.62 2.7 3.27 14.3

3 172 48 8.66 5.71 0.119 1.67 1.00 16 0.72 0.045 1.24 1.09 1.52 2.6 3.00 12.0

4 235 51 15.31 9.90 0.194 1.58 1.02 14 1.02 0.072 1.43 1.35 1.55 2.7 3.64 15.0

Average @
@

@
@

@
@

@
@

1.65 1.02 @
@

@
@

@
@

1.38 1.22 1.57 2.7 3.28 13.7

computes the intensity sensitivity using an intelligent method.

Our experiments have shown much improved runtimes and

a good OPC result quality. We only considered constant

threshold model in this work, but we will extend the algorithm

to handle variable threshold model in the future.

ACKNOWLEDGMENTS

This work is partially supported by SRC, IBM Faculty

Award, Fujitsu, Qualcomm, Sun, and Intel equipment and

KLA-Tencor software donations. The authors would like to

thank Dr. Chris A. Mack from lithoguru.com and Dr. Wang

Yao from UT Austin Physics Department for helpful discus-

sions.

REFERENCES

[1] N. B. Cobb, “Fast Optical and Process Proximity Cor-

rection Algorithms for Integrated Circuit Manufacturing,”

Ph.D. dissertation, University of California at Berkeley,

1998.

[2] A. Poonawala and P. Milanfar, “Mask Design For Opti-

cal Microlithography — An Inverse Imaging Problem,”

IEEE Trans. on Image Processing, vol. 16, no. 3, pp.

774–788, Mar. 2007.

[3] N. B. Cobb and Y. Granik, “Model-based OPC using

the MEEF matrix,” in Proc. SPIE 4889, Dec. 2002, pp.

1281–1292.

[4] B. Painter, L. L. Melvin, III, and M. L. Rieger, “Clas-

sical control theory applied to OPC correction segment

convergence,” in Proc. SPIE 5377, May 2004, pp. 1198–

1206.

[5] W. C. Huang, C. M. Lai, B. Luo, C. K. Tsai, M. H.

Chih, C. W. Lai, C. C. Kuo, R. G. Liu, and H. T. Lin,

“Intelligent model-based OPC,” in Proc. SPIE 6154, Apr.

2006, pp. 1065–1073.

[6] A. D. Dave, C. P. Babcock, S. N. McGowan, and Y. Zou,

“Methods and factors to optimize OPC run-time,” in

Proc. SPIE 6520, 2007.

[7] M. Do, J. Kang, J. Choi, J. Lee, Y. Lee, and K. Kim,

“Efficient approach to improving pattern fidelity with

multi-OPC model and recipe,” in Proc. SPIE 6349, Oct.

2006.

[8] N. Cobb and Y. Granik, “New concepts in OPC,” in Proc.

SPIE 5377, 2004, pp. 680–690.

[9] J. Ye, Y.-W. Lu, Y. Cao, L. Chen, and X. Chen, “Sys-

tem and method for lithography simulation,” Patent US

7,117,478 B2, Jan. 18, 2005.

[10] G. A. Gomba, “Collaborative Innovation: IBM’s Immer-

sion Lithography Strategy for 65 nm and 45 nm Half-

pitch Nodes & Beyond,” in Proc. SPIE 6521, 2007.

[11] Y. C. Pati and T. Kailath, “Phase-shifting masks for

microlithography: automated design and mask require-

ments,” Journal of the Optical Society of America A,

vol. 11, pp. 2438–2452, Sep. 1994.

[12] M. Born and E. Wolf, Principles of Optics : Electromag-

netic Theory of Propagation, Interference and Diffraction

of Light, 7th ed.

[13] Y. Pati, A. Ghazanfarian, and R. Pease, “Exploiting struc-

ture in fast aerial image computation forintegrated circuit

patterns,” IEEE Trans. on Semiconductor Manufacturing,

vol. 10, no. 1, pp. 62–74, Feb. 1997.

[14] P. Yu, S. X. Shi, and D. Z. Pan, “Process variation

aware opc with variational lithography modeling,” in

Proc. Design Automation Conf., 2006, pp. 785–790.

[15] ——, “True Process Variation Aware Optical Proximity

Correction with Variational Lithography Modeling and

Model Calibration,” Journal of Microlithography, Micro-

fabrication and Microsystems, vol. 6, no. 3, Jul.–Sep.

2007.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes in C: The Art of Scientific

Computing. Cambridge University Press, 1992, pp. 383–

385.

859

	Main
	ICCAD2007
	Front Matter
	Table of Contents
	Author Index

