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Abstract—As the 193nm lithography is likely to be used for 45nm and

even 32nm processes, much more stringent requirement will be posed on

Optical Proximity Correction (OPC) technologies. Currently, there are

two OPC approaches — the model-based OPC (MB-OPC) and the inverse
lithography technology (ILT). MB-OPC generates masks which is less

complex compared with ILT. But ILT produces much better results than

MB-OPC in terms of contour fidelity because ILT is a pixel based method.
Observing that MB-OPC preserves the mask shape topologies which leads

to a lower mask complexity, we combine the strengths of both methods —

the topology invariant property and the pixel based mask representation.

To the best of our knowledge, it is the first time that this topological
invariant pixel based OPC (TIP-OPC) paradigm is proposed, which fills

the critical hole of the OPC landscape and potentially has many new

applications. Our technical novelty includes the lithography friendly mask
topological invariant operations, the efficient Fast Fourier Transform

based cost function sensitivity computation and the TIP-OPC algorithm.

The experimental results show that TIP-OPC can achieve much better

post OPC contours compared with MB-OPC while maintaining the mask
shape topologies.

I. INTRODUCTION

As the semiconductor industry technology node scales down to 65,
45 or even 32 nm, the pattern printability and the process window
are significantly reduced due to the fundamental limit of lithography

systems. A variety of Resolution Enhancement Techniques (RET)

are developed to address this problem. Optical Proximity Correction

(OPC) is one the most important RET techniques.

The current most widely used OPC is Model-Based OPC (MB-

OPC) [1–3], where the mask shapes are represented as parametrized

polygons such that the shapes can be modified to compensate

lithography pattern transfer non-idealities. However, the OPCed result

quality is subject to the OPC-recipes (rules for segmenting and

tagging), which may be very complex and hard to tune [4]. Also,

the parametrized polygons are not flexible enough to represent any

possible shapes, which could result in contour fidelity degradation.

Alternatively, Inverse lithography technology (ILT) [5–11] rep-

resents mask shapes as pixel images, which allows more flexible

mask shape modifications. This approach could result in better image

fidelity comparing with MB-OPC. It has also been demonstrated

that hardware acceleration and parallel computation can improve the

runtime significantly such that this method can be applied to a full

chip in practice [12]. However, all the published ILT formulations

[7, 8, 11, 13] do not constrain the mask shapes explicitly. The ILT

algorithms add Sub-Resolution Assist Features (SRAF) by models.

But they may add too many SRAFs, which result in big mask

complexity. As an example, Figure 1 shows the target patterns and the

mask pattern generated by ILT in [11]. In addition, these approaches

do not guarantee the minimum size of SRAFs, while small SRAFs

may induce mask inspection problems.

MB-OPC does not add SRAFs, which maintains the mask shape

topology. We call the OPC algorithm which maintains mask topolo-

gies as topological invariant OPC (TI-OPC). ILT clearly belongs

(a) Target (b) Mask

Figure 1. Mask patterns generated from ILT can be extremely complicated
with many small features and SRAFs [11].
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Figure 2. A cartoon picture of the TI-OPC (left) and TV-OPC (right) results.
The center one is the target. The left mask has the same topology as the target,
while the right one is not topologically equivalent to the target.

to the other category, topological variant OPC (TV-OPC). Figure 2

shows a cartoon picture of the difference between TI-OPC and TV-

OPC.

It is beneficial to combine the advantage of MB-OPC (topological

invariance) and the advantage of ILT (pixel based). We call the new

paradigm topology invariant pixel based OPC (TIP-OPC). TIP-OPC

is OPC-recipe independent and it is much superior compared to the

MB-OPC in terms of print contour fidelity. These are important for

Design-For-Manufacturability (DFM) analysis. That is, if the designs

are not friendly to TIP-OPC, we would know they are definitely

not good for MB-OPC, which means designs have to be modified.

Otherwise, even if the designs do not have good contour fidelity using

MB-OPC, it could be due to imperfection in the OPC recipes. In this

case, we should look for better recipes, which may save unnecessary

design modifications. We believe the introduction of TIP-OPC could

be a fundamental breakthrough in OPC algorithms.

The main contributions of this paper are as follows:

• We introduce a new topological invariant paradigm for pixel

based OPC, which provides a trade-off between OPC quality

and mask complexity which is not possible in the current

methodologies, like MB-OPC and ILT.

• TIP-OPC have finer control over masks than MB-OPC, it can

achieve better contour fidelity.

• TIP-OPC explicitly controls the SRAF generations, which re-

sults in less complex masks compared to ILT. In this work, we

consider the case of not generating any SRAFs. We will extend

the algorithm such that it can generate a given number of SRAFs

in the future.
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• Our algorithm is enabled by efficient techniques on topological

invariant mask operations and fast FFT based cost function

sensitivity computation.

• We derive, for the first time, the optimal tile size for dense

simulation method.

The rest of this paper is organized as follows. We review the

lithography fundamentals for sparse and dense simulation methods

in Section II. In Section III, we show the optimal value of the tile

size parameter and show that the dense simulation method could

be faster than the sparse simulation method for dense simulation

applications. In Section IV, we formally define topology invariance

and derive topology invariant pixel based mask operations with

lithographic considerations. In Section V, we describe the contour

based cost function and the TIP-OPC algorithm. Section VI shows

the experimental results, followed by the conclusions in Section VII.

II. LITHOGRAPHY PRELIMINARIES

Any lithography system can be described as a function T [·],

r = T [m], (1)

which transfers the mask transmission function m(x, y) to the
normalized post development photoresist thickness function r(x, y)
(0 6 r 6 1). The (x, y) in m(x, y) and r(x, y) denotes the locations
on the mask and the wafer respectively. In reality, masks can only take

discrete transmission values. For example, binary masks are allowed

to take only 0 or 1. We denote the region where m equals 1 as M
and the region where m equals 0 as M , which is M ’s complement.
As a simplification, the transfer from the mask pattern to the

photoresist pattern on the wafer can be divided into the following

two steps.

A. Aerial Image Formation

The aerial image intensity is described by the Hopkins’ Equation

[14]. It can be simplified by the kernel decomposition [3, 15–18],

which has the following two formulations. In the first formulation,

the image intensity I(x, y) is computed in spatial domain as

I(x, y) =
P−1X

p=0

σp|hp ∗m|2, (2)

where hp(x, y)’s are called optical kernels, which incorporate the
optical system information, and ∗ is the convolution operator. In the
second formulation, the image intensity I(x, y) is computed in the
frequency domain using FFT as

I(x, y) =

P−1X

p=0

σp

˛̨
˛F
ˆ
HpF

−1[m]
˜˛̨
˛
2

, (3)

where F and F
−1 are the Fourier and inverse Fourier transform

operators and

Hp = F
−1[hp]. (4)

These two methods are called the sparse method and the dense

simulation method, respectively.

B. Photoresist Development

In this work, we use the constant threshold model. We will extend

the work using other models in the future. In the constant threshold

model model, the photoresist thickness r(x, y) can be written as

r(x, y) = D
`
I(x, y)

´
, (5)

where the function D(·) has the following form

D(I) =

(
0 I > Ith

1 I < Ith
. (6)

III. ANALYSIS OF THE COMPLEXITIES OF SPARSE AND DENSE

SIMULATIONMETHODS

Lithography simulation used to be sparsely performed in OPC

software [3]. As technology scales, it becomes desirable to perform

lithography simulation on more locations to avoid the printing of any

unnecessary features [19–21]. Dense simulating is also preferred to

take advantage of the latest photoresist modeling advancement [22].

We will demonstrate that it is better to use the dense simulation

method than to use the conventional sparse simulation method for

the dense simulation [21].

In lithography simulation, the images are simulated on grid points.

We study a chip discretized to a grid of L× L points. We define a
few useful terms below:

• s is the percentage of grid points where simulations are per-
formed. s = 1, when the simulations are performed on every
grid points (extremely dense).

• v is the ratio between the total number of polygon vertexes and
the total number of mask pixels.

• K2 is the size of the spatial kernels (hp’s).

We can derive the complexity for sparse simulation method [3] as

follows.

Lemma 1 (Sparse simulation method complexity). The total number

of complex number operations using (2) is approximately

Tsparse =f(K)PL2, (7)

where f(K) is written as

f(K) = svK2. (8)

For dense simulation, the chip of size L×L is divided into tiles of
size (K′ −K)× (K′ −K) to save memory usage (Figure 3). Each

L
K′

K
2

Figure 3. A chip with size L × L is divided into many tiles of size K ′
−

K , where K is the same as that of sparse simulation and K ′ is a tunable
parameter. Each tile is zero-padded to of size K ′.

tile is then zero-padded to of size K′ ×K′ [23]. Let us denote the

complexity of the FFT of a K′ ×K′ array as CK′2 log K′, where

C is a constant depending on the implementation details of the FFT
algorithm [24]. We can derive the complexity for dense simulation

method as follows.

Lemma 2 (Dense simulation method complexity). The total number

of complex number operations using (3) is approximately

Tdense = Cg(K′, K)PL2, (9)

where

g(K′, K) =
K′2

(K′ −K)2
log K′. (10)
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Since the factor PL2 is common to (7) and (9), we only to need

consider f(K) and Cg(K′, K) to compare the complexity of both
methods.

It is easy to check that there is an optimal tile size K′
opt for any

given kernel sizeK to achieve the minimal g(K′, K). Figure 4 shows
the optimal tile size K′

opt as a function of K, which indicates that
K′
opt is almost proportional to K. For the range that is shown, we
have K′

opt = 20K. It is the first time that show there is an optimal
tile size for dense simulation method, which is important for us to

fine tune dense simulator to achieve the fastest speed.
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Figure 4. K ′
opt as a function of the kernel size K .

Figure 5 shows Cg(K′
opt(K), K) as a function of K, where we

take C = 4 and v = 1/400 for illustration purposes. We consider
the extremely dense simulation case (s = 1). It is easy to see that
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Figure 5. Cg(K ′
opt, K) as a function of the kernel size K . C = 4, s = 1

and v = 1/400.

dense simulation method will become better than sparse simulation

method as for big K. As the technology node decreases, bigger
kernel size (K) is needed for better model accuracy [21]. Using
etch models could also increase the kernel size a lot [25]. Dense

simulation method is preferred in these cases.

IV. TOPOLOGICAL INVARIANT PIXEL BASE MASK SHAPE

OPERATIONS WITH LITHOGRAPHIC CONSIDERATIONS

We discuss the connectivity of binary images and define the

topological invariance, and list all the single pixel mask operations

that preserve the shape topology. We further eliminate the operations

which could produce lithography unfriendly shapes. The operations

defined here will be used in TIP-OPC.

A. Connectivity and Topological Equivalence

A lot of papers have been published on thinning of digital image,

where some operations are defined to maintain shape topologies [26].

We will modify those operations to fit our specific needs.

A pixel p can be gray (representing value 1) or white (representing
value 0). A gray pixel can be turned to white and a white pixel can be
turned to gray. These operations are called flipping-off and flipping-

on of that pixel.

Definition 1 (Universal set and complement). A universe set is

defined as the set of all the pixels under consideration. For an image

of size m× n, the universe set can be written as

U = {(i, j)|0 6 i < m and 0 6 j < n}. (11)

Any set of shapes can be denoted as M,

M = {(i, j)|(i, j) is inside the shapes}. (12)

Its complement M is defined as

M = U \M, (13)

where “\” denotes the set subtraction.

Remark. The universal set shall be understand as the whole mask

region in our problem.

Definition 2 (Neighbor pixels). As shown in Figure 6, the pix-

els x1, x3, x5, x7 are the 4-neighbors of the pixel p. The pixels
x1, x2, . . . , x8 are the 8-neighbors of p.

p x1

x2x3x4

x5

x6 x7 x8

Figure 6. Pixels in the neighborhood of p. xi (i = 1, 3, 5, 7) are 4-neighbors
of p. xi (i = 1, . . . , 8) are 8-neighbors of p.

Definition 3 (Boundary pixels). A 4- (or 8-) boundary pixel is a

pixel with at least one 4- (or 8-) neighbor pixel having a different

color. We call a boundary pixel an inner boundary pixel when it

is gray, and a boundary pixel an outer boundary pixel when it is

white. For a gray pixel set M, we denote the set of all its outer

boundary pixels as β+
c (M) and the set of all its inner boundary

pixels as β−
c (M), where c = 4 or 8. We denote the union of them

as βc(M) = β+
c (M)∪β−

c (M), called the 4- (or 8-) boundary ofM.

Definition 4 (Path). A sequence of pixels y1, y2, . . . , yn is called a 4-

(or 8-) path if yi+1 is a 4- (or 8-) neighbor of yi, i = 1, 2, . . . , n−1.

Definition 5 (Connectivity). A pair of pixels x, y in a subset S of
a pixel set M are 4- (or 8-) connected if there exists a 4- (or 8-)

path from x to y consisting of pixels in S only. The subset S is 4-

(or 8-) connected if every pair of pixels x, y in S are connected. In

this case, S is said to be a 4- (or 8-) component of M. The number

of 4- (or 8-) components of M is called the degree of 4- (or 8-)

connectivity of M, denoted as D4(M) (or D8(M)).

It has been suggested that connectivities for S and its complement

S should be different to avoid the paradoxes of S and S being both

connected or both disconnected [27]. For example, in Figure 7, if

the “diamond” loop (consists of all the gray pixels) is connected, the

white pixels should be dissected into two components, intuitively.

Otherwise, all the white pixels shall be connected. However, if we
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Figure 7. The connectivity paradox (taken from [27]).

choose 4-connectivity for both the gray and white pixels, we end

up with that the pixels on the loop are disconnected and its interior

region is also disconnected from its exterior region. If we choose

8-connectivity for both the gray and white pixels, then all the pixels

on the loop are connected and all white pixels are connected. To

avoid this paradox, we choose 4-connectivity for gray pixels and

8-connectivity for white pixels, which makes two intuitively discon-

nected mask shapesM1 andM2 in Figure 8 really disconnected. We

will define the topological equivalence based on the above choice of

connectivities.

M1

M2

Figure 8. 4-connectivity is chosen for gray pixels to make M1 and M2

disconnected. Hence, 8-connectivity is chosen for white pixels.

Definition 6 (Topological Equivalence). Suppose we have two pixel

sets X and Y. If we can find a sequence of pixel sets M1, . . . , Mn

(M1 = X and Mn = Y), which satisfy

• Mi 6= Mi+1, i = 1, . . . , n− 1;
• there exists some xi such that

Mi ∪ xi = Mi+1 or Mi \ xi = Mi+1, i = 1, . . . , n− 1;

• D4(Mi) = D4(Mj) and D8(Mi) = D8(Mj) for any i, j,

we call X and Y are topological equivalent.

B. Topological Invariant Mask Operations

Definition 7 (Removable and insertable). Suppose M is a gray

pixel set and its complement M is a white pixel set. A gray pixel

p is removable if flipping it off does not change the degree of 4-
connectivity of M, D4(M), and the degree of 8-connectivity of M,

D8(M). A white pixel p is insertable if flipping it on does not change
D4(M) and D8(M).

Remark. Flipping a removable or insertable pixel at one time does not

change mask topology. According to Definition 6, we can sequentially

apply these operations without changing the mask topology.

We will show below what pixels are removable or insertable pixels.

Flipping on or off a pixel could only affect the connectivity of its

8-neighbors. Therefore, we only need to examine all the 3× 3 pixel
patterns (totally 23×3 = 512 patterns).
In Figure 9, we list all the removable and insertable cases. In this

figure, “x” denote a pixel that could be gray or white and “?” is the

pixel under consideration. It is easy to check that flipping the “?”

pixel for each cases does not change the degree of connectivity for

gray regions and white regions. These cases under rotation by 90◦,

180◦ and 270◦ axes are still removable or insertable. Therefore, there

are totally (1 + 22 + 23 + 24)× 4× 2 = 232 cases.

? ? ?
x x

x
?
x

x

x

x

? ?
x x

?
x x

x
?
x

x

x

x

Figure 9. Removable (upper row) and insertable (lower row) pixels (denoted
by “?”). There are totally 232 cases.

C. Lithographic Considerations

Because the optical lens is a low-pass filter, the high frequency

components associated with fine features can not pass the lens.

Therefore, the sharp corners are not necessary from the lithography

imaging point of view. For example, we do not want those patterns

in Figure 10.

Figure 10. Lithography non-friendly features (marked by ellipses).

To circumvent the creation of these three pattens, we do not allow

the following three removable or insertable pixels shown in Figure 11,

respectively. We also do not allow the cases under rotation by 90◦,

180◦ and 270◦. Therefore, there are totally (1 + 1 + 22) × 4 = 24
cases not allowed.

? ? ?
x

x

Figure 11. Not allowed removable (left and middle) and insertable pixels
(right) (denoted by “?”) due to lithographic considerations. There are totally
24 cases.

Deleting the cases in Figure 11 from Figure 9, we end up with

removable and insertable pixels that are lithography friendly in

Figure 12. These cases under rotation by 90◦, 180◦ and 270◦ , or

reflection about x or y axes are still in this category. Therefore, there
are totally (((22−1)+23 +24)+1+22 +23 +(24−22))×4 = 208
cases. It is easy to confirm that flipping the pixel marked with “?”

?
x

?
x x

x
?
x x

x x

? ?
x x

?
x x

x
?
x

x

x

Figure 12. Lithography friendly removable (upper row) and insertable (lower
row) pixels, marked by “?”. There are totally 208 cases.

does not change the topology, and it will not create any fine features

like those in Figure 10.

Since the center pixels in Figure 12 are all boundary pixels, we

call them lithography friendly topological invariant boundary pixels.

We denote the set of inner boundary pixels as γ−(M) and γ+(M),
respectively. TIP-OPC (Section V) only flips those pixels. Thus,

the mask shape topology is maintained. And we guarantee that no

lithography unfriendly pattern is generated.
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V. TOPOLOGICAL INVARIANT PIXEL BASED OPC (TIP-OPC)

In this section, we propose a contour based cost function. Then

we show an efficient method to compute the derivative of the

cost function with respect to mask changes. TIP-OPC uses this

information to flip the mask pixels.

A. TIP-OPC Cost Function

All the ILT approaches [7, 8, 11, 13] minimize a cost function

F [m],

min
m

F [m], (14)

where m is the mask transmission function, which can take any value
between 0 and 1. The cost function F [m] has the following form,

F [m] = PI(I) + Pc(m) + Ptr(m), (15)

where I denotes the image intensity distribution.

The first term PI(I) in (15) penalizes the print image intensity I
when it is different from the desired intensity distribution. However,

in practice we only care about the printed contour instead of the

intensity distribution. Two different contours might have the same

PI(I), and two different intensity distribution (with different PI(I))
might have the same contours. To eliminate this mismatch between

contours and intensity distributions, we define the contour based cost

function for TIP-OPC as

F [M ] ≡ area(R△ bR), (16)

where M is the mask shapes, R is the printed region and bR is the
target region. Since the contour is explicitly expressed in the above

cost function, we can expect its solution is better than the solution

from the cost function in (15) in terms of contour fidelity.

The second term Pc(m) in (15) penalizes complexity masks. The
third term Ptr(m) in (15) favors masks with certain transmission
values (e.g., 0 and 1 for binary masks). Since TIP-OPC maintains
the mask shape topology and generates mask pixels with transmission

value of 0 and 1 only, it does not need these terms.

The new metric area(R△ bR) is also better than the Edge Placement
Error (EPE) metric, commonly used in MB-OPC algorithm for

contour fidelity [17]. EPE which denotes the distance between the

target contour and the printed contour at the tagging points. Since

EPEs are measured sparsely, making them all zero can not guarantee

the printed contour and the target contour the same as shown in

Figure 13. But area(R△ bR) is zero if and only if R = bR.

Figure 13. EPEs are zero at the tagging points (dots). But the two contours
are different.

B. Efficient Computation of the Cost Sensitivity

We will use the sensitivity of the cost function F with respect
to mask changes to guide TIP-OPC. A naive way to compute the

sensitivity is to flip each mask pixel and directly compute the new

cost function F and check how much F changes. But this is too
slow to be used in practice. In the following, we derive a fast way to

compute the sensitivity using convolutions, which can be computed

by FFT efficiently.

The change of F with respect to the change of the intensity can
be derived as

δF [M ] = δ area(R△ bR) =

I

∂R

1
bR
− 1 bRq`

∂I
∂x

´2
+
`

∂I
∂y

´2 δIds (17)

where bR is the complement of bR and 1A is the indicator function of

the set A defined as

1A(x) =


1 if x ∈ A,
0 if x /∈ A.

.

According to (17), the cost F is reduced if the intensity on the
in-target printed contour decreases; otherwise, F is increased. The
change rate is inversely proportional to the intensity slope.

To enable numerical computation, we write the pixel based version

of (17) as

δF [M] =

ZZ

β4(R)

1
bR\β

+

4
( bR)
− 1 bR\β

−

4
( bR)

q`
∂I
∂x

´2
+
`

∂I
∂y

´2 δIdxdy. (18)

where the path integral is replace by an integral over the print image

boundary pixels β4(R). We do not use any pixels on the target
boundary β+

4 (bR) and β−
4 (bR) due to the discontinuity of the sensitive

when R and bR coincide.
By convoluting the mask transmission function m with the real

and imaginary parts of hp in (2) separately, we can rewrite (2) in the

following form

I [m] =

2P−1X

p=0

σp(hp ∗m)2, (19)

where there are 2P terms and hp is real (hp here is different from

hp of (2)). Differentiating I with respect to m and plugging it in

(18), we can derive the sensitivity

δF

δm
= 2

2P−1X

p=0

σp

 
1β4(R)(1 bR\β

+
4

( bR)
− 1 bR\β

−

4
( bR)

)(hp ∗m)
q`

∂I
∂x

´2
+
`

∂I
∂y

´2 ∗ Php

!
,

(20)

where P is an operator defined as

Pw(x, y) = w(−x,−y). (21)

The convolutions hp∗m’s are the intermediate results of the intensity
computation through the dense simulation method (3), which do not

incur additional runtime since we compute the intensity anyway.

Since (20) consists of convolutions, we can still compute it for all

the mask pixels using FFT efficiently. TIP-OPC uses this sensitivity

information to effectively reduce the cost function F .

C. The Overall TIP-OPC algorithm

The TIP-OPC algorithm (Algorithm 1) is an iterative algorithm

which successively modify the mask M using the mask operations

defined in Section IV to reduce the cost function F [M]. The
algorithm stops if no improvement can be made in the cost function.

Since TIP-OPC flips on mask pixels in the topological invariant

outer boundary γ+(M) and flips off mask pixels in the topological
invariant outer boundary γ−(M), we only need δF

δm
on γ−(M) ∪

γ+(M). It is easy to see the following facts based on the definition of
δF
δm
and that only two mask transmission values 0 and 1 are allowed:

• A gray pixel can be flipped off, if it has positive value of δF
δm
.

• A white pixel can be flipped on, if it has negative value of δF
δm
.
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Algorithm 1 TIP-OPC algorithm

1: function TIPOPC(bR)
2: M ← bR // initialize mask to target
3: repeat

4: compute δF
δm

5: a← max
“

max
p∈γ−(M)

δF

δm
,− min

p∈γ+(M)

δF

δm

”

6: if a 6 0 then
7: break

8: b← a/2
9: failed← true
10: for i← 1, n do
11: M′ ← ADJUSTMASK(M, a, b)
12: if cost is reduced then

13: failed← false
14: M ←M′

15: break

16: else

17: b← b/2

18: until failed

We call the absolute value δF
δm
in the above two cases as the useful

value of δF
δm
. Line 5 in Algorithm 1 computes the maximum useful

δF
δm
(denote as a in the algorithm). The following of the algorithm

modifies the pixels whose useful δF
δm
are between (a/2, a], (3a/4, a],

(7a/8, a], . . ., until the cost function gets improved or failed even
after n trials. In the later case, the algorithm stops.
Algorithm 2 shows how the mask is adjusted to maintain the

topology invariance. Note that M′ and M have the same topology

at the beginning. Each change in Line 6 maintains M′’s topology.

Therefore, at the end of the program M′ is still topologically

equivalent to the input M. Hence, the topology of M is maintained.

Algorithm 2 Mask Adjustment algorithm

1: function ADJUSTMASK(M, a, b)
2: M′ ←M // make a copy

3: for pixel p ∈ γ+(M) ∪ γ−(M) do
4: if p’s useful δF

δm
is in (a− b, a] then

5: if flip p on M′ if it does not change M′’s topology

then

6: flip p on M ′

7: return M′

VI. EXPERIMENTAL RESULTS

We implemented both the sparse and dense lithography simulators,

the current commonly used MB-OPC algorithm described in [28], and

the TIP-OPC algorithm described in this paper using C++. The grid

size of δ = 5nm was used for the following experiments.
Based on the lithography friendly topological invariant mask

operations, no SRAFs and excessively small features are created.

Therefore, it is guaranteed that TIP-OPC generates less complex

masks than ILT by theory, and there is no need to compare them

experimentally.

A. Runtime Comparison of Sparse and Dense Simulations

We used both sparse and dense sparse simulation methods on a

114 × 114 via array to simulate the aerial image on all the grid

points. Each via was of size 100 nm× 100 nm. The pitches in both
x and y-directions were 200 nm. We took K = 240 and K′ =
20×K = 4800. We employed P = 6 kernels in the simulations.
The runtime for sparse and dense simulation methods were

1.99× 103 sec and 70.8 sec. We can see that the sparse simulation
method can be much slower than the dense simulation method for

dense simulation applications.

B. Quality Comparison of MB-OPC and TIP-OPC

We used quadrupole illumination with illumination parameters

σcenter = 0.85 and σradius = 0.2. The numerical aperture was
NA = 0.8, the wavelength was λ = 193 nm and the intensity

threshold was Ith = 0.1. We employed P = 8 kernels in the
simulations. We took n = 10 in TIP-OPC. For MB-OPC, we used
the segment length of 100 nm.
The MB-OPC and TIP-OPC results of 6 test patterns across

130 nm, 90 nm and 65 nm technology nodes are shown in Table I.
These patterns are typical poly and metal 1 patterns. We used

area(R △ bR) as the metric for the contour fidelity. The “total”
columns denote area( bR) in the unit of pixel. The errors are in the
unit of pixel, as well. The “ratio” columns denote the relative error

area(R△ bR)/ area( bR). The “Reduction” columns show the reduction
in the relative error between MB-OPC and TIP-OPC. The average

reductions are shown for each technology generation. As we can see

clearly from the table as technology scales down, TIP-OPC give more

improvement in terms of relative error reduction. Thus, it is indeed

needed in the future generation when the error budget become more

stringent.

Note that as technology scales down, the relative error in TIP-

OPC also goes up. This does not mean TIP-OPC does not do a good

job. No OPC can make corner printed perfectly since the lithography

optical system can not pass the high frequency components associated

with the corners. As the technology scales, the percent of the corner

region increases. Therefore, we see an increase in the relative error

for TIP-OPC, as well. However, TIP-OPC is in fact better than any

MB-OPC algorithm. The errors reflect the fact that no other OPC

algorithm can correct those residue errors, which means that the

layouts shall be modified to be more OPC friendly if we want the

error be reduced further.

Due to space limitations, we only show the OPCed mask for the

pattern “pat2” (five-jog pattern) in Figure 14. As we can see TIP-

OPC maintains topologies and do not create any SRAFs. TIP-OPC

also does not create any lithography unfriendly mask features. Higher

contour fidelity and low mask complexity demonstrate that TIP-OPC

is indeed a promising method.
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Figure 14. OPCed mask of the pattern “pat2”.
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Table I
OPC QUALITY COMPARISON

130nm

pattern total
MB-OPC TIP-OPC

Reduction
error ratio error ratio

pat1 48216 3780 7.84% 1053 2.18% 5.66%

pat2 227200 15615 6.87% 1914 0.84% 6.03%

pat3 38130 2833 7.43% 720 1.89% 5.54%

pat4 53360 4021 7.54% 1177 2.21% 5.33%

pat5 42255 3172 7.51% 799 1.89% 5.62%

pat6 58860 4493 7.64% 1225 2.08% 5.55%

average 5.62%

90nm

pattern total
MB-OPC TIP-OPC

Reduction
error ratio error ratio

pat1 24360 2126 8.73% 797 3.27% 5.46%

pat2 113680 7113 6.26% 1806 1.59% 4.67%

pat3 19533 2796 14.31% 1176 6.02% 8.29%

pat4 27294 3647 13.36% 1136 4.16% 9.20%

pat5 21714 2934 13.51% 1161 5.35% 8.17%

pat6 30252 4088 13.51% 2023 6.69% 6.83%

average 7.10%

65nm

pattern total
MB-OPC TIP-OPC

Reduction
error ratio error ratio

pat1 12600 1609 12.77% 788 6.25% 6.52%

pat2 58000 5176 8.92% 2091 3.61% 5.32%

pat3 10026 3618 36.09% 2466 24.60% 11.49%

pat4 13968 5314 38.04% 2642 18.91% 19.13%

pat5 11118 3813 34.30% 2480 22.31% 11.99%

pat6 15424 5703 36.97% 3322 21.54% 15.44%

average 11.65%

VII. CONCLUSIONS

In this paper, we proposed the topological invariant pixel based

OPC (TIP-OPC) paradigm. To reduce mask complexity that could

result from ILT, the current pixel based approach, we maintain the

mask shape topology and do not allow lithography unfriendly mask

patterns. Our TIP-OPC algorithm has efficient lithography friendly

topologically invariant mask operations and FFT based cost-to-mask

sensitivity computation. Our experimental results show that TIP-OPC

is much better than MB-OPC in terms of contour fidelity. Since

the mask shapes are topologically invariant, the resulting mask has

relatively low mask complexity compared with ILT.
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