
A New GraphTheoretic, MultiObjective Layout
Decomposition Framework for Double Patterning

Lithography

Jae-Seok Yang, Katrina Lu∗, Minsik Cho†, Kun Yuan, and David Z. Pan
Dept. of ECE, The University of Texas at Austin, Austin, TX USA

∗Intel Corporation, Hillsboro, OR USA
†IBM T. J. Watson Research Center, Yorktown Heights, NY USA

jsyang@cerc.utexas.edu, katrina.y.lu@intel.com, minsikcho@us.ibm.com
kyuan@cerc.utexas.edu, dpan@ece.utexas.edu

ABSTRACT

As Double Patterning Lithography(DPL) becomes the lead-
ing candidate for sub-30nm lithography process, we need
a fast and lithography friendly decomposition framework.
In this paper, we propose a multi-objective min-cut based
decomposition framework for stitch minimization, balanced
density, and overlay compensation, simultaneously. The
key challenge of DPL is to accomplish high quality decom-
position for large-scale layouts under reasonable runtime
with the following objectives: a) the number of stitches is
minimized, b) the balance between two decomposed layers
is maximized for further enhanced patterning, c) the im-
pact of overlay on coupling capacitance is reduced for less
timing variation. We use a graph theoretic algorithm for
minimum stitch insertion and balanced density. An addi-
tional decomposition constraints for self-overlay compensa-
tion are obtained by integer linear programming(ILP). With
the constraints, global decomposition is executed by our
modified FM graph partitioning algorithm. Experimental
results show that the proposed framework is highly scalable
and fast: we can decompose all 15 benchmark circuits in five
minutes in a density balanced fashion, while an ILP-based
approach can finish only the smallest five circuits. In addi-
tion, we can remove more than 95% of the timing variation
induced by overlay for tested structures.

1. INTRODUCTION
Current lithography technology has been facing severe

limitations because the lithography equipment using a 193nm
wavelength light source is hard to print sub-30nm half pitch
patterns.

As an ideal solution, EUV(Extreme Ultra-Violet) lithog-
raphy has been proposed. However, EUV lithography equip-
ment is not available for 22nm production due to techni-
cal barriers such as the lack of power sources, resists, and
defect-free masks. An alternative choice of 22nm patterning
is Double Patterning Lithography (DPL) [1–3] which prints
two lines in a pitch.

DPL requires layout decomposition before manufacturing.
When the distance between two patterns is less than mins,
two rectangles need to be decomposed on different masks.
We can resolve conflicts by inserting stitches during decom-
position as shown in Fig. 1(a). However, minimum stitch
insertion is required to reduce area and improve yield. Not
all the conflicts can be resolved by inserting stitches. An
irresolvable conflict is called a native conflict in Fig. 1(b).
The only way to remove native conflicts is to modify layout.
After layout modification, we need to decompose layout it-

eratively. Therefore, a fast decomposition algorithm is re-
quired to shorten the time of an iterative layout modification
and decomposition.

(a) Decomposable layout (b) Undecomposable layout

Figure 1: Layout decomposition.

A rule-based decomposition method was proposed in [4].
The combined approach of routing and decomposition was
proposed in [5]. The paper in [6] proposed a layout decom-
position method based on constraint graph construction and
ILP. The paper in [7] presented a simultaneous optimization
of conflicts and stitches with an ILP formulation. Our algo-
rithm does not need to consider conflicts during decompo-
sition explicitly because our framework guarantees conflict-
free after an initial (relative) coloring. In addition, since ILP
is NP-hard, the algorithm in [6,7] cannot be applied to large
scale decomposition which is required to decompose layout
balanced or overlay compensated. All the approaches are
neither scalable nor flexible to add constraints.

First, our framework is highly scalable enough for large
scale layout decomposition. Our decomposition framework
consists of three steps: relative coloring, constraint insertion
for timing driven decomposition(TDD), and group color as-
signment. In our framework, relative coloring works for re-
moving every conflict except native conflicts, and we opti-
mize decomposition for minimum stitch and balanced den-
sity during a group color assignment step. The optimization
for decomposition is mainly based on a graph theoretical ap-
proach, which is extended from a min-cut graph partitioning
algorithm such as FM [8]. Overall, our framework runs in
polynomial time.

Another benefit of our framework is that balanced den-
sity can be achieved concurrently with stitch minimization.
Non-uniform density can cause more pattern distortion and
hotspot [9], while a balanced layout allows more space for
scattering bar insertion during OPC(optical proximity cor-
rection) as well as better patterning quality. Therefore, the
decomposed two layers need to be balanced as much as pos-
sible. Our framework balances local density as well as global
density.

Last, our framework is flexible to add more constraints
during decomposition. Because metal patterns formed by
DPL can have space variation due to overlay, it can change
coupling capacitance between neighboring wires, resulting in



timing variation [10–12]. Hence, as an application to show
the flexibility of our framework, we propose overlay self-
compensated decomposition. TDD constraints are gener-
ated by an ILP formulation to mitigate the timing variation
due to overlay. The number of variables in our ILP formu-
lation for TDD constraints generation is tractable enough
for large scale decomposition. The TDD constraints are in-
serted as a weight on an edge of our graph modeling for color
assignment. In the experimental result, we show that timing
variation caused by overlay can be reduced from 8.1%∼9.3%
to less than 0.5%.

Overall, our graph theoretic decomposition optimizes lay-
out for minimum stitch insertion with balanced density and
overlay compensation, simultaneously.

The contributions of this paper include the following:

• We show that the number of stitch insertions required
to decompose a layout is equal to the cut size of graph
partitioning, and stitch minimization can be achieved
by a min-cut partitioning algorithm.

• Our graph based decomposition is up to 104 times
faster than ILP based decomposition with less than
1% stitch increase.

• We show that layout decomposition plays a role in en-
hancing patterning quality by enforcing balanced den-
sity and overlay self-compensation.

• This is the first work dealing with lithography friendly
objectives such as density and variability reduction
during layout decomposition, to our best knowledge.

The rest of the paper is organized as follows. We introduce
several requirements for decomposition in section 2. Our
decomposition framework is proposed in section 3. In section
4, we will explain how to extract TDD constraints, and show
our graph based TDD approach. Experimental results are
shown in section 5, and we conclude in section 6.

2. DECOMPOSITION REQUIREMENTS AND

MOTIVATION

2.1 Balanced Density

(a) Unbalanced decomposition: 38%(Red) and 62% (Blue)

(b) Balanced decomposition: 48%(Red) an 52% (Blue)

Figure 2: Aerial image comparison of decomposed
layout with different density.

Even though two features within minimum space are as-
signed to different masks, unbalanced density can cause lithog-
raphy hotspot as well as lowered CD uniformity due to irreg-
ular pitch. The aerial image of an unbalanced decomposition
can have a patterning problem as shown in Fig. 2(a). The
balanced decomposition of the same circuit in Fig. 2(b) does

not have the problem. Even though the decomposed layout
in Fig. 2 does not represent a general case, balanced decom-
position provides more lithography friendly layout because
of higher regularity [13]. Therefore, balanced density should
be considered in decomposition algorithms.

2.2 Overlay compensation

(a) Decomposition without
overlay compensation

(b) Decomposition with
overlay compensation

Figure 3: Overlay compensated decomposition.

The main problem of litho-etch-litho-etch(LELE) DPL
comes from overlay between the 1st and the 2nd patterning
step. Even though manufacturing engineers are working to
gain more overlay control, it is impossible to remove overlay
completely. Therefore, it is desirable to compensate over-
lay during design phase. Fig. 3 shows an observation how
to compensate the overlay effect. When we do not consider
overlay during decomposition, the variations of the coupling
capacitance between two metal layers are in the same direc-
tion(Fig. 3(a)). However, Fig. 3(b) shows less timing vari-
ation because C1 decreases while C2 increases with overlay.
In the section IV, we propose a decomposition method in
order to compensate overlay effect.

3. BIPARTITIONING BASED DECOMPO

SITION

3.1 Overall decomposition flow

Figure 4: Overall flow of the decomposition frame-
work.

The overall flow of our framework is shown in Fig. 4. The
first step is to divide every shape into rectangles which are
basic units in our framework because polygon is difficult to
find neighboring shape, and dividing into single grid unit
can increase complexity and memory usage.

Fig. 5 shows the decomposition result after each step. A
rectangle is divided into smaller ones based on projected re-
gion from a non-touching neighboring rectangle in Fig. 5(b).
The re-segmented rectangles based on the projection in Fig. 5(c)
are grouped by traversing non-touching neighbors in Fig. 5(d).
If a re-segmented rectangle does not have a non-touching
neighbor, the rectangle becomes an independent group by



(a) Segmentation into rect-
angles and finding conflicts

(b) Projection to conflict
rectangles within mins

(c) Re-segmentation based
on projected rectangles

(d) Rectangle grouping for
initial coloring

(e) Relative coloring to re-
move conflicts within groups

(f) Group color assignment
to minimize stitch insertion

Figure 5: Intermediate decomposition results of the
framework (AOI2 cell, Metal1).

itself. A group consisted of more than two rectangles is
defined as a dependent group. There are nine dependent
groups in Fig. 5(d). In Fig. 5(e), an initial (relative) color
is assigned to the rectangles to remove every conflict. There
are 23 stitches after relative color assignment which does not
consider the stitch minimization. We will explain grouping
and relative coloring in section 3.2.

Layout decomposition at the relative coloring step is done
without any objective. To minimize stitches, we introduce
group color determination with the min-cut partitioning based
algorithm in section 3.4. Fig. 5(f) shows the final coloring
result after stitch minimization. If color1 is assigned as a
group color, all the rectangles in the group have to flip their
pre-assigned relative color. And vice versa, all the rectan-
gles in the group of color0 should keep their initial color
assignment. For example, all the rectangles in G1, G3, and
G5 flipped their initial color in Fig. 5(f). Notice that an
independent group may flip its color as well. After color
flipping, three stitches are required to resolve conflicts.

The separation of relative coloring and group color assign-
ment enable us to find a native conflict during the relative

Algorithm 1 Grouping and Relative Coloring(DFS)

1: A set of re-segmented rectangles S
2: RelativeColor = 0
3: for each rectangle s ∈ S do
4: Create new group G
5: s →relative color = Relative Color
6: G →rectangle.insert(s)
7: A set of non touching neighbors N
8: for each rectangle n ∈ N do
9: Recursive Relative Coloring(G,n,INV(RelativeColor))

10: end for
11: end for
12: Recursive Relative Coloring(G,s,RelativeColor)
13: s →relative color = RelativeColor
14: G →rectangle.insert(s)
15: A set of non touching neighbors N
16: for each rectangle n ∈ N do
17: Recursive Relative Coloring(G,n,INV(RelativeColor))
18: end for

coloring step, which reduces the design time for iteratively
removing native conflicts and decomposition.

3.2 Grouping and Relative Coloring

(a) Re-segmentation (b) Relative coloring

Figure 6: Re-segmentation and grouping process.

A rectangle is divided into smaller pieces of rectangles
based on the candidate location for stitch insertion. For
example, in Fig. 6(a), a rectangle is divided into three small
rectangles (r1, r2, r3). Projection from r4 makes r1 to
be colored differently from r4. In addition, to get enough
margin for overlap of stitch insertion, r1 should be extended
by minom/2, where minom is the minimum overlap margin
for overlay. r3 and r5 should have a different color in a
similar way. r2 does not have a non-touching neighbor which
means that we can assign any color to r2. The re-segmented
rectangles are grouped by a neighboring relation in Fig. 6(b).
A relative color is assigned to all the grouped rectangles,
which indicates their relative relationship to other rectangles
in the same group. Grouping and relative coloring can be
implemented simultaneously with Algorithm 1.

3.3 Group Color Assignment Problem
In a given layout, let G = {gi|1 ≤ i ≤ n} be a set of groups

and H = {hw|1 ≤ w ≤ x} be a set of stitch candidates and
S = {sj |1 ≤ j ≤ m} be a set of stitches to be inserted. Every
boundary between two touching groups becomes a candidate
for stitch insertion. x is the number of touching pairs of
groups. The goal of our problem is to find minimum set of
S from H . When two touching groups have different colors,
hw becomes an element of S. Let G0 = {gi0 |1 ≤ i0 ≤ n0} be
a set of groups assigned to color0 and G1 = {gi1 |1 ≤ i1 ≤
n1} be a set of groups assigned to color1. The group color



assignment is a process which assigns gi to either G0 or G1

to minimize m, the element number of S.
Let Aw and Bw be the wth touching pair between two

groups. If Aw and Bw have different colors, stitch insertion
is required and hw becomes an element of S. From the
observation, an objective function for stitch minimization
can be formulated as minimizing

∑

w
Aw

⊕

Bw, which is
formulated with an ILP in (1).

Minimize :
∑

Xw

Subject To : Aw − Bw ≤ Xw

: Bw − Aw ≤ Xw (1)

3.4 MinCut Based Stitch Minimization
To link the boolean objective function with layout seg-

mented into rectangles, a boolean variable is assigned to
each rectangle to indicate the group and relative color. For
example, rectangle group A in Fig. 7(a) is expressed by A
and A to indicate group and relative color. Independent
rectangle groups represented by X, Y, and Z do not have a
complementary variable.

(a) Boolean variable assignment af-
ter grouping and relative coloring

(b) Formulation for mini-
mum stitch insertion

Figure 7: An example showing group color assign-
ment formulation after relative coloring.

There are five groups in Fig. 7(a). Our goal is to de-
termine the five binary variables to minimize the objective
function in Fig. 7(b). The ILP formulation in (1) is not an
efficient way for the problem because ILP is in class NP-
Hard. There is no way to find the exact solution for the
formula in polynomial time because the number of solution
sets is 2n, when there are n groups in a layout. Therefore,
we need an efficient heuristic method for our problem.

If we present the objective function as a graph, according
to the following theorem, the group color assignment for
minimum stitch insertion can be achieved with a graph bi-
partitioning algorithm. Even though a graph partitioning
does not guarantee an optimal solution, efficient heuristics
such as FM have been studied.

Theorem 1 The number of stitches in layout decomposi-

tion is equal to the cut size of the bi-partitioning problem in

graph theory.

Proof. Let G = {gi|1 ≤ i ≤ n} be a set of groups and
S = {sj |1 ≤ j ≤ m} be a set of stitches. After group
color assignment, G0 = {gi0 |1 ≤ i0 ≤ n0} is a set of groups
assigned to color0 and G1 = {gi1 |1 ≤ i1 ≤ n1} is a set
of groups assigned to color1. sj appears only when two
touching groups are assigned to gi0 and gi1 because a stitch
disappears when two touching groups have the same color.
Therefore, the number of stitches, m, is equal to the number
of times that two touching groups have different colors.

In a similar way, let C = {ck|1 ≤ k ≤ p} be a set of cuts
and V = {vl|1 ≤ l ≤ q} be a set of vertexes in the graph for
bi-partitioning. The cut in bi-partitioning appears when two

connected vertexes are in a different partition. Therefore,
the cut size, p is equal to the sum of the edge weight linked
between other partitions. When we consider G as a vertex in
a graph, G0 and G1 become two partitioned set of vertexes.
Therefore, m becomes p with graph partitioning expression,
and the number of stitches is equal to the cut size of the
bi-partitioning.

According to Theorem 1, the solution of a min-stitch for-
mulation is the same as the results of a min-cut bi-partitioning.
The only difference from a conventional min-cut partition-
ing algorithm is that a vertex representing the group color
is incompatible with a complementary vertex of the same
group. We define the two nodes to be in different partitions
as a repulsive pair.

3.5 Modified Graph MinCut partitioning
We implement the classic FM partitioning algorithm with

the following modification in order to support repulsive lay-
out pairs and balanced density.

(a) A and A are in the
same partition

(b) A and A are in the
different partitions

Figure 8: An example showing how to handle a re-
pulsive layout pair in FM partitioning algorithm.

Repulsive pairs cannot be guaranteed to be assigned to
different partitions simply by assigning negative weights be-
cause min-cut partitioning can fall in local minima. There-
fore, in our method, we process the repulsive pairs in two
different ways. First, if the two nodes are in the same parti-
tion, their moving gains are calculated independently. The
one with a higher gain is subject to be moved first, then
upon moving, the other one will be locked as well with a
gain of zero. In Fig. 8(a), A and A form a repulsive pair,
but they are in the same partition, so their gains are zero
and eight respectively. When A is moved, A is locked as a
result.

On the other hand, if the two nodes are in the opposite
partition, their gains are kept the same and the value is the
sum of their original gains. Upon picking one of them as the
candidate for moving, a swap is carried out to ensure they
are still kept on opposite sides. If A and A are in opposite
partition like shown in Fig. 8(b), the sum of their original
gains is eight, so their gains become eight. It results in a
swap in A and A when A is picked for moving. Regardless
of what the initial partition is in this example, it results in
the same final solution under our method.

In Fig. 9, we construct a graph to decompose the layout
in Fig. 7. The pair of group colors represented by A and A is
a repulsive pair. E and E also need to be in different parti-
tions. Edge weight between two vertexes means the number



(a) Min-cut partitioning and the decomposed layout

(b) Balanced min-cut partitioning and the decomposed layout

Figure 9: Group color assignment with different par-
titioning scheme and decomposition results.

of touching pairs between two groups. For example, since A
and X have two touching points, the edge weight between
A and X becomes two. Fig. 9(a) shows min-cut partition-
ing and the corresponding decomposed layout for minimum
stitch insertion. Color0 is assigned to all rectangles belong-
ing to groupA and groupE, while rectangles in A, E, X, Y
and Z are assigned to Color1

During partitioning, we can control stitch count and den-
sity balance. Fig. 9(b) shows the balanced partitioning and
the decomposed layout which has four stitches. Global bal-
ance can be achieved by adding a weight on a vertex in the
graph. In order to maintain a balance between two parti-
tions, we need to start with a balanced initial partitioning
solution and then keep tracks of the total weight on both
partitions. Every time before moving a vertex into another
partition, a check is carried out to ensure the area of the
original partition does not drop below a certain threshold
after moving. To consider local balance, we need to divide
the layout into subdivisions and assign a balance constraint
to each of them . The local balance is guaranteed by not
moving a vertex to another partition if the move breaks any
of the balance constraints. A balanced partitioning result
with the area weight is shown in Fig. 9(b). The decomposed
layout is balanced evenly with four stitch insertions. The
weight of the vertexes indicates the total area of rectangles
in a group.

3.6 Complexity Analysis
Let N be the number of rectangles, and E be the num-

ber of neighboring pairs. Segmentation from polygon into
a rectangle takes O(N). Finding neighbors need O(NlogN)
because sorting according to coordinate is required. The
complexity of projection to non-touching neighbor is O(E).
Grouping and relative coloring using DFS requires O(N+E).
Group color assignment with min-cut partitioning can be
done in linear time, O(N). Therefore, the complexity of the
framework is O(NlogN). Since generating TDD constraints
runs for selected nets and the number of variable is usually
less than one hundred, we can ignore the complexity of the
TDD part.

The proposed decomposition framework works in polyno-
mial time, while ILP based approaches [6,7] are in NP-hard
class.

4. TIMING DRIVEN DECOMPOSITION

4.1 TDD constraints for overlay compensation
We can get a robustly decomposed layout against timing

variation due to overlay. Delay variation due to overlay is
expressed in Eqn 2. Since non-coupling capacitance such as
metal to ground and output loading is independent of over-
lay, ∆Delayoverlay does not need to consider non-coupling
capacitance.

∆Delayoverlay = Delayno overlay − Delayoverlay (2)

In Eqn 3, let Cc be a coupling capacitance when there is no
overlay with distance d0. ǫ is the permittivity of an isolation
material such as SiO2. When we consider space variation
due to overlay, Cc becomes Cc overlay which has a distance
variation presented by ∆d0. Let g be a variation of the
coupling capacitance between horizontally parallel patterns,
and h be a variation of the coupling capacitance between
vertically parallel patterns.

Cc = ǫArea/do, ∆Cc = do/(do + ∆do)

Cc overlay = Cc∆Cc = ǫArea/(do + ∆do)

g and h = 1 − ∆Cc = ∆do/(do + ∆do) (3)

Let ak be the multiplication factor of the coupling capaci-
tances for a horizontally parallel pattern and bk be the mul-
tiplication factor for vertically parallel patterns. ak and bk

are defined as kth coupling capacitance times the resistance
from driver to the location of the coupling capacitance. In
equ 4, Rd is the driver resistance and Rn is the nth resistance
from the driver. We assume that coupling capacitance is lo-
cated in the mth resistance. MFk is the miller factor [14,15]
of the kth coupling capacitance for equal timing determined
by slew rate of victim and aggressor.

ak and bk =

{

Rd +
m−1
∑

n=1

Rn + 0.5Rm

}

MFkCck (4)

∆Delayoverlay can be re-written in Eqn 5. i denotes the
number of aggressors horizontally, and the number of ag-
gressors vertically is presented by j.

∆Delayoverlay = a1g1 + . . . + aigi + b1h1 + . . . + bjhj

= AGT + BHT

where, A = [a1 a2 . . . ai] , G = [g1 g2 . . . gi]

B = [b1 b2 . . . bj ] , H = [h1 h2 . . . hj ]
(5)

Distance variation due to translation overlay is expressed
in Eqn 6 [10]. For simplicity, we will focus on translation
overlay in this paper. Our work can be extended to include
rotation and magnification overlay. λ is the amplitude of
translation overlay, and θ is the translation angle which is
a totally random value. γ represents the relative geometry
relation between the 1st and the 2nd pattern. Then, our
problem is defined to assign γ to reduce overlay effect on
timing.

∆do = λcos(θ − γ) (6)

From Eqn 3 and 6, we can derive gi and hi. Since gi

has two possible choices according to γ (Note that the hor-
izontally parallel pattern can have two geometric relations:
γ = π/2 or γ = 3π/2), gi is modeled with a binary variable,
xi which indicate geometric relations. For example, if xi has



one, it means that γ = π/2 is preferred to reduce overlay
effect, while the opposite geometric relation (γ = 3π/2) is
preferred if xi is zero. We can simplify gi when d0 is rel-
atively larger than λ. Since overlay amplitude should be
controlled to less than 10% of spaces(d0) between two pat-
terns, d0 + λsin(θ) can be simplified to d0. hj has a π/2
phase difference with gi. After simplication, we present gi

and hj in Eqn 7.

gi =xiλcos(θ − π/2)/(d0 + λcos(θ − π/2))

+(1 − xi)λcos(θ − 3π/2)/(d0 + λcos(θ − 3π/2))

≈
λ

d0

(2xi − 1)sin(θ)

hj =yjλcos(θ)/(d0 + λcos(θ))

+(1 − yj)λcos(θ − π)/(d0 + λcos(θ − π))

≈
λ

d0

(2yj − 1)cos(θ) (7)

From Eqn 5 and 7, our cost function for overlay im-
pact on timing is derived in Eqn 8. To minimize the cost
function, we need to minimize

√

α2 + β2, the amplitude of
sin(θ+φ). φ works only for phase difference. Since the hori-
zontal and vertical patterns are orthogonal, we can optimize
α2 and β2 independently, which means that the overlay im-
pact is minimized when α2 and β2 have minimum values,
respectively.

√

α2 + β2sin(θ + φ)

where, α = 2AXT −
i
∑

n=1

an, β = 2BY T −

j
∑

n=1

bn

X = [x1, x2, . . . , xi] , Y = [y1, y2, . . . , yj ]

φ = sin−1

(

β
√

α2 + β2

)

(8)

Finally, we propose an ILP formulation to find the relative
positions of horizontally parallel patterns to minimize α2.

minimize 4
i
∑

n=1

{

an

(

AW T
n − wnn

i
∑

p=1

ap

)}

+

(

i
∑

p=1

ap

)2

s.t. wii = xi

1 + wij ≥ xi + xj

xi ≥ wij

xj ≥ wij (9)

New binary variables, wij are introduced to change quadratic
integer programming to linear integer programming. xi and
wij are binary variables in (9), and Wn are defined as fol-
lows.

Wn = [wn1 wn2 . . . wni] (10)

In a similar way, we can get a solution set of Y to minimize
β2 by substituting a to b, and x to y in the above ILP
formulation.

Fig 10 shows an example pattern to apply the proposed
method. a1, a2, b1, and b2 corresponding to each coupling
capacitance are presented in Fig 10. Here, there are two
horizontally parallel aggressors and two vertically parallel
aggressors.

α = a1(2x1 − 1) + a2(2x2 − 1)

β = b1(2y1 − 1) + b2(2y2 − 1) (11)

Figure 10: An example with four neighbors.

α and β of Fig 10 are shown in Eqn 11. By the proposed
ILP formulation in Eqn 9, we can determine x1 and x2 to
minimize α2, and y1 and y2 to minimize β2, respectively.
Here, x1 and x2 mean the relative decomposition for Cc1

and Cc2 as shown in Fig. 11.

(a) Overlay compensation
with three stitches

(b) The same compensation
with two stitches

Figure 11: Different decomposition with TDD.

After applying our ILP formulation, we can get two differ-
ent decomposition results as shown in Fig 11. Three stitches
are inserted at Fig 11(a). However, a different solution for
the same overlay compensation requires only two stitches.
We will present our combined approach of TDD constraints
and graph based stitch minimization in order to obtain stitch
optimization with TDD constraints.

4.2 TDD constraints aware decomposition

(a) After relative coloring (b) Group color assignment
without TDD constraints

(c) TDD Constraints
insertion

(d) Group color assignment when
the edge weight(w) is bigger than
one

Figure 12: Decomposition with TDD constraints.

From the previous subsection, we can get constraints for
TDD. X and Y are determined by the ILP formulation. Let



X be partitioned into X0 and X1. In Fig 11(a), X0 is {x1}
while x2 belongs to X1. Since the complement of x2 is x′

2,
we can express the constraints with X0 = {x1, x

′

2}. Since
the elements in X0 need to have the same color, x1 should
be forced to be with x′

2 in the same partition. We can make
them to be in the same partition by adding weighted edge.
The allowed stitch increase can be controlled by adjusting
the weight. Decomposition for more overlay compensation
needs to increase edge weight which results in more stitches.

Fig. 12 shows the graph based TDD procedure. The
grouping and relative coloring result is presented in Fig. 12(a).
Graph based decomposition without TDD constraints is in
Fig. 12(b). Two edges are inserted to consider TDD con-
straints in Fig. 12(c). When the weight denoted by w is
bigger than one, new partition result is in Fig. 12(d). Two
stitches are inserted for TDD, and the decomposition result
looks like Fig. 11(b).

5. EXPERIMENTAL RESULTS
We implement the decomposition framework in C++ and

OpenAccess2.2 in order to interface with GDSII directly.
We test on a 3.0GHz Linux machine with 4G RAM to verify
our algorithm.

First, we show the scalability and runtime of our algo-
rithm. Poly-silicon layer in benchmark circuits is scaled
down to 40nm half pitch. ISCAS-85&89 benchmark circuits
are used to verify the scalability. Before decomposition,
minimum space between poly-silicon was 40nm. We select
mins=42nm and minom=10nm for decomposition to avoid
native conflicts, which should be removed by layout modifi-
cation. ISCAS-89 circuits have many native conflicts when
mins is bigger than 43nm because the ISCAS-89 bench-
marks we have are not designed for double patterning friendly.
Table 1 shows the runtime of decomposition as the design
size increases. S38584 which is the biggest circuit in the
benchmark can be decomposed evenly in 285.24s. Since
mins=42nm is close to 40nm minimum space, only a few
stitches are required to resolve the conflicts.

Second, we verify the quality and efficiency of our frame-
work. Table 2 compares our ILP formulation in (1) and
our heuristic based on min-cut partitioning with respect to
runtime and stitch optimization for layout decomposition.
GLPK(GNU Linear Programming Kit) solver is used for
ILP solving. Because decomposition with ILP formulation
is intractable as circuit size increases, we divide a circuit
into several parts by row of cells because we cannot decom-
pose with ILP even for small circuits like C499. Since poly-
silicon layers are isolated with other parts of the circuit by
row of cells, decomposition after dividing into several rows
still provides an exact solution with the ILP formulation.
Note that our ILP implementation provides an optimal so-
lution for minimum stitch insertion with more runtime be-

Table 1: Runtime comparison(mins = 42nm)
Runtime(second) Results

Circuit #Group #Touching Except Min-cut Inserted Balance
neighbors partition partition Total Stitches ratio(%)

C432 1554 763 0.48 0.01 0.49 0 48.18
C499 3503 2260 1.12 0.23 1.35 0 48.08
C880 3105 1308 0.86 0.07 0.93 0 48.10
C1355 4630 2091 1.39 0.21 1.60 1 48.05
C1908 7403 3447 2.81 0.52 3.33 0 48.23
C2670 11325 5291 3.32 0.92 4.24 0 48.05
C3540 13934 6062 4.71 1.26 5.97 0 48.02
C5315 20393 9382 7.19 2.01 9.20 5 48.02
C6288 18836 7764 6.14 1.27 7.41 0 48.02
C7552 29642 13344 11.84 3.13 14.97 0 48.03
S1488 5952 2558 1.57 0.29 1.86 0 48.01
S15850 7983 3282 130.38 9.78 140.16 0 48.04
S35932 188556 75943 263.29 14.21 277.50 0 48.01
S38417 195448 74311 270.43 18.49 288.92 0 48.00
S38584 188298 72342 262.66 22.58 285.24 1 48.01

cause our ILP implementation does not use any speed-up
technique described in [6,7], which may sacrifice optimality.
We use mins=54nm and minom=20nm to enable more po-
tential stitch insertions. Since ISCAS-89 benchmarks have
native conflicts when mins is below 54nm, we do not show
their results in Table 2. When mins is bigger than 54nm,
there are native conflicts on several ISCAS-85 benchmarks.
Therefore, we choose mins=54nm based on the availability
of decomposition, which is enough to show the efficiency of
our framework. The quality of the min-cut graph partition-
ing depends on the initial partitioning. Thus, we execute the
modified min-cut partitioning for twenty times and pick the
case with minimum stitch. Runtime means the total run-
time for twenty runs. When we do not consider balanced
density, min-cut partitioning and ILP based decomposition
have the same number of stitches except C1908. C1908 has
one more stitch in our approach. The runtime of graph the-
oretic decomposition is 1.4∼9762.6 times faster than that of
ILP based decomposition.

(a) Yellow(27%), Blue(73%) (b) Yellow(50%), Blue(50%)

Figure 13: C432 decomposed layout.

Fig. 13 compares decomposition between the unbalanced
and balanced case at mins=60nm and minom=20nm for
C432. The unbalanced layer has nine stitches with 27% bal-
anced ratio while the balanced decomposition has 17 stitches
with globally 50% balanced ratio. In addition, Fig. 13(b) is
locally balanced because we enforce the local density bal-
ance between 40% and 60% in each cell row. The result also
shows that there is the trade-off between stitch counts and
density balance.

Figure 14: The balanced decomposed layout has less
EPE than the unbalanced one (C432).

OPC and lithography simulation is executed using CAL-
IBRE for the two cases in Fig. 13. Edge Placement Er-
ror(EPE) distributions after OPC are compared in Fig. 14.
The balanced decomposition in Fig. 13(b) shows lower EPE
distribution than the unbalanced decomposition in Fig. 13(a),
which indicates that the balanced decomposition has less
variation than the unbalanced decomposition.



Table 2: Decomposition results with ISCAS benchmark(mins = 54nm, minom = 20nm)
No balance, ILP(Exact) No balance, Graph Partition(Proposed heuristic) 48% balance, Graph Partition(Proposed heuristic)

Circuit #Groups #Touching #Partitions RunTime Inserted Balanced RunTime RunTime Inserted Balanced RunTime RunTime Inserted Balanced
neighbors for ILP (total) stitches ratio(%) comparison (total) stitches ratio(%) comparison (total) stitches ratio(%)

C432 1512 1098 1 0.63 1 20.35 x1.4 0.46 1 33.60 x1.0 0.65 2 48.12
C499 3103 3280 12 100.85 50 24.01 x49.9 2.02 50 46.47 x49.9 2.02 50 48.50
C880 3758 2631 14 4525.57 198 30.09 x2773.0 1.63 198 47.12 x2807.4 1.61 198 48.87
C1355 4836 3083 18 702.40 114 18.91 x347.4 2.02 114 36.12 x344.0 2.04 114 48.00
C1908 7795 5472 18 37019.76 371 22.09 x9762.6 3.79 372 46.78 x10422.2 3.55 373 48.66
C2670 12863 9905 - > 24Hr - - - 6.70 947 43.51 - 6.87 948 49.30
C3540 16638 12021 - > 24Hr - - - 9.85 1034 41.46 - 10.07 1034 49.39
C5315 24483 18373 - > 24Hr - - - 17.43 1546 40.87 - 18.50 1549 48.00
C6288 19922 11577 - > 24Hr - - - 11.57 256 30.81 - 11.25 256 48.13
C7552 34309 24789 - > 24Hr - - - 30.89 2058 41.97 - 31.52 2060 48.02

Table 3: Overlay compensation with TDD
Timing Overlay

Test #Horizontal #Vertical Variation Edge Inserted Compensation
circuit neighbors neighbors on overlay weight stitches Rate(%)

0.2 0 0.0
net1 3 6 9.3% 0.5 1 76.3

1 3 95.9
100 3 95.9
0.2 0 0.0

net2 10 9 8.1% 0.5 0 0.0
1 3 54.6

100 10 99.9
0.2 1 41.4

net3 16 16 9.0% 0.5 3 87.8
1 9 99.8

100 9 99.8

Last, we verify the effectiveness of timing driven decom-
position. As a test circuit, we made three net structures
with a metal spacing of 32nm assuming 3nm of overlay as
shown in Table 3. By changing edge weight, we could control
the number of inserted stitches. For example, we could see
41.4% overlay compensation with one stitch insertion when
edge weight is 0.2 for Net3. Since the maximum peak to peak
delay variation caused by overlay is 9.0%, timing variation
on overlay becomes 5.274%(=9%*(1-0.414)) after one stitch
insertions. It becomes 1.098%(=9%*(1-0.878)) after three
stitch insertion. When we increase edge weight, we could
see more stitch insertions and higher overlay compensation
rate.

Figure 15: Reduction of timing variation as more
stitches are inserted (Net3).

Fig. 15 compares overlay compensation according to dif-
ferent stitch insertion for Net3. As more stitches are in-
serted, timing fluctuation along the translation angle re-
duces. When nine stitches are inserted, we can see that
there is no timing variation due to overlay. The bottom
peak variation is not symmetric with top peak variation in
the graph because of the second order term of sin(θ) and
cos(θ) in Eqn 7. Note that ignoring the second order term
with the assumption that d0 + α is approximately equal to
d0 is reasonable because we could compensate overlay more
than 95% in every test structure.

6. CONCLUSIONS
In this paper, we propose an efficient and flexible lay-

out decomposition framework with a graph theoretical ap-
proach. All the benchmark circuits can be decomposed in
five minutes with balanced density. Our framework can
expedite decomposition which requires iterative executions
and fixing layout in order to remove native conflicts. Since
the decomposition framework is flexible to add constraints,
we extend our work to timing driven decomposition which
reduces the timing variation due to overlay. As a future
work, we can extend the framework for correlation aware
decomposition and multiple decomposition using a multi-
way partitioning algorithm.

7. REFERENCES
[1] D. Laidler, P. Leray, K. D’have, and S. Cheng. Sources of

Overlay Error in Double Patterning Integration Schemes. In
Proc. SPIE 6922, 2008.

[2] G. Bailey, A. Tritchkov, J.-W. Park, L. Hong, V. Wiaux,
E. Hendrickx, S. Verhaegen, P. Xie, , and J. Versluijs. Double
pattern EDA solutions for 32nm HP and beyond. In Proc.
SPIE 6521, 2007.

[3] David Z. Pan, Jae-Seok Yang, Kun Yuan, Minsik Cho, , and
Yongchan Ban. Layout Optimizations for Double Patterning
Lithography. In IEEE 8th International Conference on ASIC
(ASICON), Oct 2009.

[4] T.-B. Chiou, R. Socha, H. Chen, L. Chen, S. Hsu, P. Nikolsky,
A. van Oosten, and A. C. Chen. Development of layout split
algorithms and printability evaluation for double patterning
technology. In Proc. SPIE 6924, 2008.

[5] M. Cho, Y. Ban, and D. Z. Pan. Double Patterning Technology
Friendly Detailed Routing. In Proc. Int. Conf. on Computer
Aided Design, Nov 2008.

[6] A.B. Kahng, C.-H. Park, and H. Yao. Layout Decomposition
for Double Patterning Lithography. In Proc. Int. Conf. on
Computer Aided Design, Nov 2008.

[7] K. Yuan, J.-S. Yang, and D. Z. Pan. Double Patterning Layout
Decomposition for Simultaneous Conflict and Stitch
Minimization. In Proc. Int. Symp. on Physical Design, March
2009.

[8] C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic
for Improving Network Partitions. In Proc. Design Automation
Conf., June 1982.

[9] Alfred K. Wong. Resolution Enhancement Techniques in
Optical Lithography. SPIE Publications, 2001.

[10] J.-S. Yang and D. Z. Pan. Overlay Aware Interconnect and
Timing Variation Modeling for Double Patterning Technology.
In Proc. Int. Conf. on Computer Aided Design, Nov 2008.

[11] R. S. Ghaida and P. Gupta. Design-Overlay Interactions in
Metal Double Patterning. In Proc. SPIE 7275, 2009.

[12] E. Y. Chin and A. R. Neureuther. Variability aware
interconnect timing models for double patterning. In Proc.
SPIE 7275, 2009.

[13] J. Rubinstein and A. Neureuther. Post-decomposition
assessment of double patterning layout. In Proc. SPIE 6924,
2008.

[14] P. Chen, D. A. Kirkpatrick, and K. Keutzer. Miller Factor for
Gate-Level Coupling Delay Calculation. In Proc. Int. Conf. on
Computer Aided Design, Nov 2000.

[15] A. B. Kahng, S. Muddu, and E. Sarto. On Switch Factor Based
Analysis of Coupled RC Interconnects. In Proc. Design
Automation Conf., June 2000.


