
Copyright © 2007 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics

Vol. 3, 1–8, 2007

Wakeup Scheduling in MTCMOS Circuits Using
Successive Relaxation to Minimize Ground Bounce

Anand Ramalingam1, Anirudh Devgan2, and David Z. Pan1�∗
1Department of Electrical and Computer Engineering, The University of Texas, Austin, TX 78712, USA

2Magma Design Automation, Austin, TX 78759, USA

(Received: xx Xxxx xxxx; Accepted: xx Xxxx xxxx)

Power gating is a very effective technique to reduce the subthreshold leakage by using sleep tran-
sistors to turn off the functional blocks or cells when they are not used. When the sleep transistors
are turned on, the power grid may experience a huge current surge which may violate the integrity
of the power grid. This paper addresses this problem by formulating the wakeup scheduling of
sleep transistors as an exact mixed integer linear program (MILP). Since the resulting MILP is ��-
hard, we propose a very efficient yet near optimal algorithm by successively relaxing the MILP to
a sequence of linear program (LP) problems. The results obtained on the ISCAS benchmarks indi-
cate that our proposed algorithm obtains a near optimal solution with a speedup of 15× on average
compared to the MILP. The proposed algorithm has a runtime complexity which is linear in practice.

Keywords: MTCMOS, Ground Bounce, MILP, Leakage, Sleep Transistors, Wakeup Scheduling.

1. INTRODUCTION

As technology scales, the supply voltage (VDD) needs to
be scaled down since it has a quadratic relationship with
the dynamic power. But scaling down VDD alone results in
loss of performance. One way to maintain performance, is
scaling down both VDD and VT.1 However, scaling down VT

exponentially increases the subthreshold leakage current.
One of the techniques to reduce subthreshold leakage is
power gating. Power gating is a circuit technique in which
a sleep transistor is inserted between the functional block
and ground. The feasibility of the sleep transistors has
been demonstrated in Refs. [1–4] through the reduction of
leakage in fabricated chips.

In the active mode, the sleep transistor is turned on to
retain the functionality of the circuit. In Ref. [5], it was
shown that the sleep transistor can be approximated by
a linear resistor that creates a finite voltage drop Vsleep ≈
RsleepI�t�, where I�t� is the switching current through the
sleep transistor. Sleep transistor sizing is one of the key
issues in power gated circuits. If the sleep transistor size
is overestimated, the silicon area is wasted and it also
increases the switching energy. If the size is underesti-
mated, the required performance might not be achieved
due to the increased resistance to the ground.5

∗Author to whom correspondence should be addressed.
Email: dpan@cerc.utexas.edu

In the literature, a lot of work has been done to size the
sleep transistor when the circuit is in the active mode. In
Ref. [6], module based design was proposed where a single
sleep transistor is used for the entire circuit. In Ref. [7],
the circuit is partitioned into clusters to minimize the max-
imum simultaneous switching current. Each cluster has an
individual sleep transistor. In Ref. [8], all the individual
sleep transistors of Ref. [7] are wired together and the
resulting mesh is called the distributed sleep transistor net-
work (DSTN). The discharging current is shared by the
sleep transistor network which reduces the size of the sleep
transistor. The sizing in all the above methodologies are
based on the maximum worst case switching current Ipeak.8

In Ref. [9], the sizing was improved due to an efficient
vectorless estimate of the worst case switching current and
timing criticality information obtained from a static timing
analyzer.

In the sleep mode, the sleep transistor is turned off, and
the source nodes of the gates in the functional block float,
thus cutting off the leakage path to the ground. The only
path that is left for the leakage current to flow is the para-
sitic capacitances of the transistor shown in Figure 1. Thus
the leakage current starts charging up the parasitic capac-
itances of the transistors as shown in Figure 2.

When the circuit is turned on, these capacitances need to
be discharged to get the circuit back to the normal mode of
operation. This discharge of current causes ground bounce
in the circuit shown in Figure 3. This ground bounce might

J. Low Power Electronics 2007, Vol. 3, No. 1 1546-1998/2007/3/001/008 doi:10.1166/jolpe.2007.116 1



Wakeup Scheduling in MTCMOS Circuits Using Successive Relaxation to Minimize Ground Bounce Ramalingam et al.

vGS

Ileak

sleep = 0

VDD

Ileak

Fig. 1. Parasitic capacitances in a power gated inverter being charged
up by the leakage current when the sleep transistor is off.

cause performance degradation or even worse, functional
failures in the adjacent units.10 The discharge of current
also causes a huge surge in the power grid which might
violate the reliability of the circuit.11

In contrast to the work in the active mode, there is rel-
atively less work in the area of minimizing the ground
bounce. In Ref. [10], to reduce the ground bounce, power
gating structures were proposed in which sleep transistors
are turned on in a non-uniform stepwise manner. The stag-
gered switching of the sleep transistors reduces the ground
bounce, is illustrated in Figure 3. A key observation from
the figure is the tradeoff between the peak current and the
time needed to switch on the circuit. In Ref. [11], the cir-
cuit is partitioned under the constraint of maximum current
drawn from the power grid when the sleep transistor is
switched on. The partitioning is done using a polynomial
time heuristic.

In this paper, we assume that the gate can be turned
on anytime subject to the fanin and current constraints.
This assumption gives more freedom to schedule gates

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

V
ca

p 
[V

]

t [ns]

Fig. 2. A parasitic capacitor charged up to almost VDD in sleep state.
Since the leakage path to ground is cutoff, the parasitic capacitances get
charged up. This simulation data is from a parasitic node in c499 under
BPTM18�19 45 nm technology with VDD = 1 V.

–1

0

1

2

3

4

5

3 3.5 4 4.5 5

I s
w

itc
h 

[m
A

]

t [ns]

Simultaneous switching

Staggered switching

Fig. 3. Switching on sleep transistor(s) for c499. This simulation is
done using BPTM 100 nm technology with VDD = 1 V. In the simulta-
neous switching, there is a single sleep transistor for the entire circuit.
We see a ground bounce of 4 mA around 3 ns, the time it switched on.
In the staggered switching of c499, the gates in c499 are switched on at
different times starting at 3 ns so that the constraint of drawing less than
1 mA is met.

than restricting a gate to a partition as in Ref. [11] which
entails switching on a partition at the beginning of every
clock cycle. Thus the tradeoff is between the time taken
to wakeup and the granularity of the scheduling.

In this paper, we make the following contributions.
• We formulate the wakeup scheduling of sleep transistors
as an exact Mixed Integer Linear Program (MILP).
• Since the resulting MILP is ��-hard, we propose
an algorithm which is computationally tractable. This is
achieved by successively relaxing the MILP to a compu-
tationally efficient LP.
• The results obtained on the ISCAS benchmarks indicate
that our proposed algorithm obtains a solution which are
near optimal with a speedup of 15× on average compared
to the MILP. The proposed algorithm has a runtime com-
plexity which is linear in practice.

The rest of the paper is organized as follows. Section 2
states and formulates the problem as a MILP in a mathe-
matically rigorous fashion. The successive relaxation algo-
rithm to solve the MILP efficiently is presented next in
the Section 3. The experimental results are presented in
Section 4, followed by conclusion in Section 5.

2. OPTIMAL FORMULATION OF WAKEUP
SCHEDULING

We assume that there is a sleep transistor for each gate
in the circuit.12 Each sleep transistor is controlled by an
unique wakeup signal. An illustration for the inverter chain
with each inverter having an individual sleep transistor is
shown in Figure 4. The objective is to minimize the time
to switch on the gates under a given current constraint of
the power grid. We also assume that the gate can be turned
on anytime subject to the fanin and current constraints.

2 J. Low Power Electronics 3, 1–8, 2007



Ramalingam et al. Wakeup Scheduling in MTCMOS Circuits Using Successive Relaxation to Minimize Ground Bounce

t0

VDD

t1

VDD

tn–1

VDD

…

Fig. 4. Each inverter has an individual sleep transistor. Also note that
each sleep transistor is controlled by an unique wakeup signal.

Problem Statement. Given a combinational circuit
and a sleep transistor for each gate, minimize the time
to switch on the sleep transistors under a given current
constraint of the power grid.

Now we can mathematically formulate the problem.
First, we define the data sets used in the model. The set
G contains all the gates in the circuit. The set N is the
discrete set of time points where a gate can switch. The
reason why the time is discretized is described later in this
section.
• g ∈G gates: instances of gates of many driving strengths
• n ∈ N time: time n indexes a discrete set N

The gate switching is captured by a binary variable,

xgn =




1� if gate g is switched at time n

0� otherwise
(1)

Since a gate can be turned on exactly once,
∑
n∈N

xgn = 1 ∀g (2)

Before turning on a gate g, we must turn on all the fanin
gates of g. If we turn on a gate g before its fanin gates have
settled, it might lead to spurious activity leading to dissi-
pation of more power. Also, due to the fanin constraints
when we turn on a gate driving a primary output we will
have valid output.

∑
n∈N

nxgjn ≥
∑
n∈N

nxgin+dgi
∀�gi� gj� ∈G (3)

where dgi
is the delay of the gate gi. In Ref. [11], the

above constraint is captured as, a gate g should lie in a
partition which is turned on later than its fanins partition.
Since we are doing a fine grained scheduling, we need to
a schedule a gate only after its fanins have settled down
to a steady state value which explains the need for dgi

, the
delay of the gate gi in Eq. (3). The current dissipated at

time n,

in =
∑
g∈G

n∑
k=0

xgkcg�n−k� ∀n (4)

where cgn is the current dissipated by the gate g at time
n. The current is a data set and hence it is oblivious to
the current characterization technique used. We used FO4
load to characterize the current seen by a gate when it is
switched on. The current at any given time n ∈ N should
be less than the given maximum cmax,

in ≤ cmax ∀n (5)

Now we explain why the time is discrete. Suppose the time
is a continuous quantity, the Eq. (3) can be written as,

tgj ≥ tgi +dgi
∀�gi� gj� ∈G (6)

where tgj is the time at which gj can switch. But this leads
to a need for boolean variable in modeling the index of
the current in Eq. (4). Thus we need to discretize the time
points. Now that we have justified discretizing time, we
will finish our formulation by modeling our objective of
minimizing the number of switching time points. Let us
introduce another variable z to model this,

z≥ nxgn ∀g�n (7)

which makes our objective,

min z

Putting everything together,

min z

s�t�
∑
n∈N

xgn = 1 ∀g
∑
n∈N

nxgjn ≥ ∑
n∈N

nxgin+dgi
∀�gi� gj� ∈G

in = ∑
g∈G

n∑
k=0

xgkcg�n−k� ∀n

in ≤ cmax ∀n
z ≥ nxgn ∀g�n

xgn ∈ �0�1� ∀g�n
This MILP formulation results in an optimal solution for

the minimum wakeup time to switch on the gates under the
given fanin and current constraints. The MILP turns out to
be ��-hard and it can be reduced from the Max-Weighted-
Clique,13 a known ��-hard problem. We propose a near
optimal successive relaxation algorithm in the next section.

3. SUCCESSIVE RELAXATION ALGORITHM

In this section, we describe the proposed successive relax-
ation algorithm. The optimal MILP formulation becomes

J. Low Power Electronics 3, 1–8, 2007 3



Wakeup Scheduling in MTCMOS Circuits Using Successive Relaxation to Minimize Ground Bounce Ramalingam et al.

an LP if we relax the binary constraint xgn ∈ �0�1� to a
continuous constraint 0 ≤ xgn ≤ 1. The key idea behind
the algorithm is using this LP as a subroutine. Since we
are solving an LP it is faster to solve and scales much
better. During every solve of the LP, the variables xgn are
guided to 0 or 1 depending upon if they are below or above
the threshold respectively. The algorithm is presented in
Algorithm 1.

Algorithm 1. Minimize Wakeup Time

Input: G gates, N switching time points,
maximum current cmax

Output: G gates scheduled time for wakeup
1: build and solve the LP got by relaxing the MILP
2: scheduled ← �

3: ready← gates driven by primary inputs
4: while all the gates are not scheduled do
5: for every gate g in ready do
6: if one of xgn is above threshold then
7: Add a new constraint to the LP by setting the xgn above

threshold to 1
8: if the new LP is feasible then
9: transfer the gate g from ready to scheduled

10: for every successor gate gs of gate g do
11: if all the fanins of gs in scheduled then
12: add gate gs to ready
13: else
14: Remove the constraint in line 7
15: Increase the number of switching time points N

16: Incrementally solve the new LP
17: else
18: guide it to threshold by narrowing the time window in

which the gate can switch

To give a concise summary of the Algorithm 1, first we
build and solve the LP got from relaxing the MILP model.
On solving the LP model we get xgn to be a continuous
value between �0�1�. The rest of code attempts to constrain
it to a binary value.

The data structure scheduled contains the gates g and
time index n such that xgn = 1. The data structure ready
contains the gates whose fanins are in scheduled and hence
ready to be scheduled now. The core of the algorithm
involves bringing gates from ready to scheduled after solv-
ing the LP. The core of the algorithm can be further broken
down into two cases,

For a gate g ∈ ready,
(1) If there exists a k, such that xgk is greater than
the threshold. This case constitutes the lines 6 to 16
Algorithm 1. This is further explained in Section 3.1.
(2) If there exists no k, such that xgk is greater than the
threshold. This case constitutes the line 18 in Algorithm 1.
This is further explained in Section 3.2.

3.1. Above Threshold

For a gate g ∈ ready, if there exists k such that xgk is
greater than the threshold, we are almost close to schedul-
ing the gate g. The value of the threshold is set to be

0.5. The value for threshold was tuned after running sev-
eral experiments and 0.5 gave the best tradeoff between
runtime and the optimal solution.

We force xgk = 1 and solve the constrained LP. If the
LP is feasible, we have scheduled the gate g at time k.
Once a gate is scheduled, we check if its successors can
be added to ready. If the constrained LP is infeasible then
we need to remove the constraint and increase the number
of switching time points. We increase the switching time
points to give the LP a chance to spread the successor
gates away from this time k and give the gate g a greater
chance of being scheduled here. But this case of infeasi-
bility occurs rarely and if we have a good guess of the
number of switching time points its occurrence is almost
avoided.

A good starting value for the number of switching time
points is obtained by multiplying the logic depth with the
average delay of the gates in the library and scale it by
a constant. If that value turns out infeasible, we can use
the standard technique of bisection to efficiently find the
lowest value which makes the LP feasible.

3.2. Below Threshold

For the gates g ∈ ready and having all their xgn below the
threshold, we need to narrow the time over which they
switch so that we will get atleast one k such that xgk is
greater than the threshold. We illustrate this idea using an
example.

To illustrate the algorithm we will use a 1-bit CLA
shown in Figure 5 as our input circuit. Initially, ready
contains �g0� g1�, since they are the only gates having pri-
mary inputs as fanin. Suppose after solving the LP, we
find that g0� g1 can be scheduled at time n = 0. Now the
variables xg0n
n=0

� xg1n
n=0
are equal to 1. All the other vari-

ables xg0n
� xg1n

� n �= 0 equal 0. Observe that the variables
xg0n

� xg1n
are now reduced to constants thus reducing the

problem size of the LP. Now the gates g2� g3 can be put in
ready since all their fanins have been scheduled.

We now illustrate the concept of time narrowing which
guides the LP to get atleast one k such that xgk is greater
than the threshold. Let none of the xg2n

be above the thres-
hold. Since the only fanin of the gate g2 is g0, the Eq. (3)
must be satisfied. Let the delay of g0, dg0

= 10 units,

an

bn

carryn–1

sumn

carryn

g0

g1

g2

g3

g4

Fig. 5. 1-bit CLA for illustrating the algorithm.

4 J. Low Power Electronics 3, 1–8, 2007



Ramalingam et al. Wakeup Scheduling in MTCMOS Circuits Using Successive Relaxation to Minimize Ground Bounce

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

x g
n

x g
n

n
(a) Before constraining

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
n

(b) After constraining

Fig. 6. Illustrates the concept of narrowing time window using gate g2

in Figure 5. Let threshold= 0�5. Figure 6(a) shows that none of the xg2n

are above the threshold. After we constrain that g2 to switch between
�10�12�, we see that xg2n
n=10

is above the threshold in Figure 6(b).
Another way to look at the same concept is shown in Figure 7.

where a unit is 10 ps. Since g0 is scheduled at 0 and dg0
=

10, the Eq. (3) reduces to,
∑
n∈N

nxg2n
≥ ∑

n∈N
nxg0n

+dg0
≥ 0+10 (8)

As shown in Figure 6, gate g2 switching spans time
units [6, 15] and xg2n

= 0�1� n ∈ �6�15�. The Eq. (8) now
reduces to,

15∑
n=6

n×0�1 ≥ 10

10�5 ≥ 10

We have now satisfied the Eq. (3) while having all xgn
below the threshold. Another way to look at this is shown
in Figure 7. If xgn can be thought of as a probability den-
sity function (pdf), then ygn =

∑n
k=0 xgk can be thought of

as the cumulative density function (cdf). The idea in this
algorithm is to make the cdf as close to a step function
as possible. After the first solve, the cdf looks to be a
slow ramp function. To make it closer to a step function,
we need to restrict the time window over which g2 can
switch. Since the delay of the fanin gate g0 is 10 units, gate
g2 can not switch before 10. So we can set the xg2n

= 0,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

y g
n 

=
 Σ

k=
0
x g

k

n
(a) Before constraining

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

n
(b) After constraining

n
y g

n 
=

 Σ
k=

0
x g

k
n

Fig. 7. This figure shows a another way to look at the concept of nar-
rowing time window shown in Figure 6. If xgn can be thought of as
a probability density function (pdf), then ygn can be thought of as the
cumulative density function (cdf). Figures 7(a), (b) can be thought of as
the cdf of the pdf in the Figures 6(a), (b) respectively. The idea of nar-
rowing the time window can viewed as making the cdf as close to a step
function as possible.

n ∈ �0�9�, thus increasing the lower bound. We need to
decrease the upper bound, and let us be aggressive in set-
ting the upper bound to 12. After an incremental LP solve,
we find that the cdf is sharper and it is brought out clearly
in Figure 6(b) where xg2n
n=10

= 0�9 and is above the thresh-
old. Another way to look at this is shown in Figure 7(b)
where the cdf has a sharper transition compared to the
transition in Figure 7(a). Now xg2n
n=10

can be forced to 1
and the LP resolved. This process is repeated till all the
gates are scheduled. It is important to notice that we intel-
ligently guided the LP to get a xgn above the threshold
by increasing the lower bound and decreasing the upper
bound.

Suppose this narrowing turned the problem to be infea-
sible, we increase the timing window till the LP is feasible
again. If we again end with all the xgn to be less than the
threshold in the new LP, we scale the number of switch-
ing time points and repeat the algorithm. The argument
for increasing the switching time points is same as the one
presented in Section 3.1.

The next section presents the results after the proposed
algorithm was run on the ISCAS benchmarks 14.

J. Low Power Electronics 3, 1–8, 2007 5



Wakeup Scheduling in MTCMOS Circuits Using Successive Relaxation to Minimize Ground Bounce Ramalingam et al.

4. EXPERIMENTAL RESULTS

The proposed relaxation algorithm has been implemented
in C++ and its results are presented for various bench-
mark circuits. We used the CPLEX library15 to solve our
LP model. The results were obtained after running on a
32-bit SPARC dual 1 GHz processor with 2 GB RAM.
The current was characterized using the BPTM 100 nm
technology with VDD = 1 V. In Table I, we present the
benchmarks on which our proposed algorithm was run.
The table contains both the logic depth and the number of
gates for a given circuit after it was mapped to our library.
In Table II, we present the time to wakeup the bench-
mark circuit along with the runtime in seconds. The FO4
delay in 100 nm is around 45 ps. If we assume the clock
period to be 15× FO4 = 675 ps,16 then all the circuits
except c6288 can be turned on within 6 clock cycles. In
Table III, we compare the results obtained from the pro-
posed algorithm and the optimal MILP algorithm and also
their runtime. For c432, c499, c880, and c1355 the pro-
posed algorithm is optimal. For c1908 it is within 1.6%
of the optimal solution. Due to prohibitive memory and
runtime we could not run MILP on the bigger benchmarks.
In terms of runtime, the proposed algorithm is superior in
almost all the cases by atleast 15×. The results were ver-
ified by doing random HSPICE simulations on the bench-
marks. In Figure 8, we plot the runtime got by running our
benchmarks against the gates (
G
)× switching time points
(
N 
). We observe that the runtime increases linearly with

G

N 
, thus enabling the algorithm to scale well.

Table I. Logic depth and gate count of the ISCAS
benchmarks after mapping to our library.

Circuit Logic depth Gates

c432 20 168
c499 11 202
c880 24 383
c1355 23 546
c1908 41 892
c2670 32 1193
c3540 47 1701
c5315 49 2311
c6288 124 2416

Table II. The time needed to switch on circuits under
the maximum current constraint of 10 mA. We used
100 nm technology to generate the results. The runtime
is also provided.

Circuit twakeup [ns] Runtime [s]

c432 1�85 2�72
c499 1 3�71
c880 2�05 22�92
c1355 2�3 60�77
c1908 3�2 256�13
c2670 2�7 492�32
c3540 3�7 1652�1
c5315 4�05 2128�1
c6288 12�2 5206�44

Table III. Comparison of the minimum wakeup time obtained by the
proposed algorithm and the optimal MILP formulation.

Proposed Optimal MILP

Circuit twakeup [ns] Runtime [s] twakeup [ns] Runtime [s]

c432 1�85 2�72 1�85 51�68
c499 1 3�71 1 44�48
c880 2�05 22�92 2�05 215�10
c1355 2�3 60�77 2�3 630�76
c1908 3�2 256�13 3�15 6066�79

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700

T
im

e 
[s

]
Gates×time points [in103]

Fig. 8. Runtime complexity is ≈ O�
G

N 
�.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a near optimal algorithm
for the wakeup scheduling of the sleep transistors. The
proposed algorithm is based on the successive relaxation of
the optimal MILP formulation of the wakeup scheduling.
We demonstrate that across the ISCAS benchmarks our
algorithm achieves a near optimal solution with a speedup
of 15× on average compared to the MILP. The runtime
is linear in gates (
G
)× switching time points (
N 
) thus
enabling scaling of the algorithm.

In the future, we plan to explore the formulation when
the sleep transistors will be shared by many gates. One
way to reuse the above algorithms is to partition the cir-
cuit into a set of supergates,17 where supergate consists
of many gates. Once we obtain this partition, we can
apply the proposed Algorithm (1) to the circuit. The result
obtained would be a sleep transistor for each supergate
or in other words a sleep transistor which shared among
several gates. The algorithmic complexity has a new com-
ponent which accounts for the time to partition the circuit
and generate supergates. Also, the proposed algorithm’s
complexity goes down since the number of supergates is
always less than the number of gates.

Acknowledgments: Anand Ramalingam thanks
Sreekumar V. Kodakara and Balasubramanian Srinivasan
for their help in implementing the CPLEX part of the
code. This work is partially sponsored by IBM Faculty
Award. We used computers donated by Intel Corporation.

6 J. Low Power Electronics 3, 1–8, 2007



Ramalingam et al. Wakeup Scheduling in MTCMOS Circuits Using Successive Relaxation to Minimize Ground Bounce

References and Notes

1. S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and
J. Yamada, 1-V power supply high-speed digital circuit technol-
ogy with multithreshold-voltage CMOS, IEEE J. Solid State Circuits
(1995), Vol. 30, pp. 847–854.

2. S. V. Kosonocky, M. Immediato, P. Cottrell, T. Hook, and R. Mann,
and J. Brown, Enhanced multi-threshold MTCMOS circuits using
variable well bias, Proceedings of the International Symposium on
Low Power Electronics and Design (2001), pp. 165–169.

3. J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar,
and V. De, Dynamic sleep transistor and body bias for active leak-
age power control of microprocessors, IEEE J. Solid State Circuits
(2003), Vol. 38, pp. 1838–1845.

4. S. Henzler, T. Nirschl, S. Skiathitis, J. Berthold, J. Fischer,
P. Teichmann, F. Bauer, G. Georgakos, and D. Schmitt-Landsiedel,
Sleep transistor circuits for fine-grained power switch-off with short
power-down times, Proceedings of International Solid State Circuits
Conference (2005), pp. 302–303.

5. J. Kao, A. Chandrakasan, and D. Antoniadis, Transistor sizing issues
and tool for multi-threshold CMOS technology, Proceedings of
Design Automation Conference (1997), pp. 409–414.

6. J. Kao, S. Narendra, and A. Chandrakasan, MTCMOS hierarchical
sizing based on mutual exclusive discharge patterns, Proceedings of
Design Automation Conference (1998), pp. 495–500.

7. M. Anis, S. Areibi, and M. Elmasry, Design and optimization of
multithreshold CMOS (MTCMOS) circuits, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2003),
Vol. 22, pp. 1324–1342.

8. C. Long and L. He, Distributed sleep transistor network for power
reduction, Proceedings of Design Automation Conference (2003),
pp. 181–186.

9. A. Ramalingam, B. Zhang, A. Devgan, and D. Z. Pan, Sleep
transistor sizing using timing criticality and temporal currents,

Proceedings of Asia South Pacific Design Automation Conference
(2005), pp. 1094–1097.

10. S. Kim, S. V. Kosonocky, and D. R. Knebel, Understanding and
minimizing ground bounce during mode transition of power gat-
ing structures, Proceedings of the International Symposium on Low
Power Electronics and Design (2003), pp. 22–25.

11. A. Davoodi and A. Srivastava, Wake-up protocols for control-
ling current surges in MTCMOS-based technology, Proceedings
of Asia South Pacific Design Automation Conference (2005),
pp. 868–871.

12. V. Khandelwal and A. Srivastava, Leakage control through fine-
grained placement and sizing of sleep transistors, Proceedings of
the International Conference on Computer-Aided Design (2004),
pp. 533–536.

13. M. R. Garey and D. S. Johnson, Computers and Intractability;
A Guide to the Theory of NP-Completeness, W. H. Freeman & Co.,
New York, NY, USA (1979).

14. F. Brglez, P. Pownall, and R. Hum, Accelerated ATPG and fault
grading via testability analysis, Proceedings of the International
Symposium on Circuits and System (1985), pp. 695–698.

15. ILOG CPLEX Reference Manual, ILOG Inc., (2002).
16. D. G. Chinnery and K. Keutzer, Closing the gap between ASIC and

custom: An ASIC perspective, Proceedings of Design Automation
Conference (2000), pp. 637–642.

17. J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, Fast statisti-
cal timing analysis by probabilistic event propagation, DAC ’01:
Proceedings of the 38th Conference on Design Automation (2001),
pp. 661–666.

18. BPTM webpage, http://www-device.eecs.berkeley.edu/∼ptm.
19. Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, New

paradigm of predictive MOSFET and interconnect modeling for
early circuit simulation, Proceedings of Custom Integrated Circuits
Conference (2001), pp. 201–204.

Anand Ramalingam
Anand Ramalingam received his B.E. degree from PSG College of Technology, Coimbatore, India and his M.S. degree from Stanford
University in 2000 and 2003, respectively. He is currently pursuing the Ph.D. degree in Computer Engineering at The University of
Texas at Austin. His research interests include timing analysis, circuit simulation, and leakage analysis.

Anirudh Devgan
Anirudh Devgan joined Magma in 2005 and manages product development for Magma’s Custom Design Business Unit. He spent 12
years at IBM in various management and technical positions at IBM Thomas J. Watson Research Center, IBM Server Division, IBM
Microelectronics Division and IBM Austin Research Lab. Devgan, named an IEEE Fellow in 2006, was the recipient of DAC’s Best
Paper Award in 2005, the IEEE William J. McCalla Best Paper Award in 2003, IBM Microelectronics Division’s Excellence Award in
2001, the 2000 IBM Corporate Award, and the IBM Outstanding Innovation Award and IBM Outstanding Research Accomplishment
Award, both in 1999. He has served on program committees for various international conferences including DAC, ICCAD, ASP-DAC,
VLSI Design, and ISQED. Devgan has published more than 70 research papers and has 22 U.S. patents either issued or pending on
various aspects of electronic design automation and circuit design. Devgan received a B. Tech. degree in Electrical Engineering from
Indian Institute of Technology, Delhi, and M.S. and Ph.D. degrees in Electrical and Computer Engineering from Carnegie Mellon
University.

David Z. Pan
David Z. Pan received his Ph.D. degree in Computer Science from University of California at Los Angeles (UCLA) in 2000. Prior
to joining the UT faculty, he spent three years as a Research Staff Member at IBM T. J. Watson Research Center’s VLSI Design
Automation Department, where he contributed to various key aspects of Placement Driven Synthesis (PDS)—IBM’s flagship design
closure tool, which won IBM Research 2002 Outstanding Accomplishment. His research interests include: nanometer physical CAD,
design for manufacturability (DFM), variation-tolerant designs, VLSI interconnects, novel circuitry and CAD for low power, vertical
integration of architecture, circuit and technology. Dr. Pan is an Associate Editor for IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems (TCAD), and IEEE Transactions on Circuits and Systems II: Express Briefs (TCAS-II), from January
2006. He is a member in the Design Technology Working Group of International Technology Roadmap for Semiconductor (ITRS).
He has served in the Technical Program Committees of many key VLSI/CAD conferences, such as ICCAD, ISPD, DATE, ASPDAC,
ISQED, ISCAS, SLIP, GLSVLSI, and ICICDT. He is the Program Committee Chair for ISPD 2007, CAD track Co-Chair for ISCAS

J. Low Power Electronics 3, 1–8, 2007 7



Wakeup Scheduling in MTCMOS Circuits Using Successive Relaxation to Minimize Ground Bounce Ramalingam et al.

2006 and 2007, Design of Reliable Circuits and Systems (DFR) Track Chair for ISQED 2007, Publicity Co-Chair for SLIP 2003,
and Local Arrangement Chair for GLSVLSI 2002. He is a member of the ACM/SIGDA Technical Committee on Physical Design. He
is a Technical Advisory Board member of Pyxis Technology, Inc. Dr. Pan has received the Best Paper in Session Award from SRC
Techcon 1998, IBM Research Fellowship in 1999, Dimitris Chorafas Foundation Award in 2000, SRC Inventor Recognition Award in
2000, Outstanding Ph.D. Award from UCLA in 2001, IBM Research Bravo Award in 2003, IBM Faculty Award in 2004–2006, the
ACM/SIGDA Outstanding New Faculty Award in 2005, and Best Paper Award Nominations at DAC 2006 and ASPDAC 2006. Dr. Pan
is a Senior Member of IEEE, and a member of ACM/SIGDA, SPIE, and ASEE.

8 J. Low Power Electronics 3, 1–8, 2007


