
PASAP: Power Aware Structured ASIC Placement

Ashutosh Chakraborty
ECE Department

University of Texas at Austin
Austin, Texas, USA

ashutosh@cerc.utexas.edu

David Z. Pan
ECE Department

University of Texas at Austin
Austin, Texas, USA

dpan@ece.utexas.edu

ABSTRACT
Structured ASICs provide an exciting middle ground between
FPGA and ASIC design methodologies. Compared to ASIC,
structured ASIC based designs require lower non recurring en-
gineering (NRE) costs and turn-around-time but suffer from
higher power consumption and lower performance. Power re-
duction for structured ASICs uses extensive clock and supply
power-down of unused circuitry and use of low power devices.
However, due to the limited granularity of power-down, physi-
cal design (specially placement) should be performed to maxi-
mize the components that can be powered down. In this paper,
we present the first placement algorithm to specifically target
this problem. Our tool, PASAP (Power Aware Structured ASIC
Placement), minimizes the clock and leakage power by maxi-
mizing the fraction of the structured ASIC that can be powered
down or disconnected from clock tree. On a set of large bench-
mark designs, PASAP reduces clock and leakage power by 32%
and 17% respectively compared to prior structured ASIC place-
ment tool RegPlace [1] incurring 17% penalty in wirelength and
30% longer runtime.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit]: Design Aids

General Terms
Algorithms, Design

Keywords
low power, placement, regular fabrics, structured ASICs

1. INTRODUCTION
Skyrocketing costs and increasing variability associated with

an ASIC design flow and unacceptable power and delay penalty
associated with FPGA design flow have forced semiconductor
companies to look for alternatives. One viable alternative that
has emerged over time is the use of structured ASICs. Struc-
tured ASICs provide an exciting middle-ground between high
performance of ASIC designs and short time-to-market FPGA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’10, August 18–20, 2010, Austin, Texas, USA.
Copyright 2010 ACM 978-1-4503-0146-6/10/08 ...$10.00.

designs. They exploit the fact that not all mask-layers pro-
vide equal value for the customers and these layers can be
pre-fabricated amortizing their cost over multiple designs [2].
Structured ASIC flow is much simpler than that for traditional
ASICs because majority of deep submicron issues such as signal
integrity, power grid optimization, low skew clock tree distribu-
tion are already taken care of by the structured ASIC vendors.

Higher power consumption compared to the ASIC approach
can prove to be the Achilles heel of structured ASIC methodol-
ogy. To reduce the power penalty, there have been many inno-
vations in their architecture including use of via programming
(instead of SRAMs which drain leakage power), low leakage
triple oxide devices, and power-down of unused components.
From the EDA perspective, the power savings can be increased
if the design tools can exploit these power optimization meth-
ods. One such step is to enhance placement algorithms to
maximize the unused components so that they can be powered
down. Distribution of cells as decided by placement determines
which areas of the structured ASICs must remain powered on.
Due to limited granularity of power down available, many non
functioning devices may be forced to remain powered up due
to neighboring functioning devices, leading to wasted leakage
power. In addition, placement also determines the extent of
the clock network that must switch at each clock cycle. Typ-
ically, cells belonging to only one clock group can be placed
close to each other, therefore wrong distribution of cells can
significantly burn much more power by requiring larger clock
network to remain active. In this paper, we tackle power aware
placement on structured ASIC platforms for the first time and
propose methods to reduce the leakage and clock power.

The rest of this paper is organized as follows: We provide
background of structured ASIC architecture and placement in
Section 2. Section 3 details the leakage and clock power model
used to evaluate the placement solution. Power aware struc-
tured ASIC placer (PASAP) is presented in Section 4. The exper-
imental setup is described in Section 5. Power reduction results
are presented in Section 6. Section 7 concludes our paper.

2. BACKGROUND
2.1 Structured ASIC Architecture

Like FPGAs, structured ASICs consist of a regular 2-D rep-
etition of a basic building block called tile. Depending on the
size of the design to be implemented on structured ASIC, the
number of repetition of the tiles in the horizontal and verti-
cal direction can be modified. The physical structure achieved
by repetition of the tile a certain number of times, will be re-
ferred to as platform. Since tile is the basic building block of
structured ASIC, we describe its architecture next.

395

Each tile is a rectangular region in which the devices are pre-
fabricated. There can be many different units fabricated in a
tile such as logic cells, flip flops, multiplexers, adders etc. In
this work, we will primarily target the architecture of a tile as
released by leading structured ASIC company eASIC [3] as part
of their worldwide placement contest. There are four different
types of cells fabricated in each tile: logic cells, flip flops units,
register files and RAMs. We refer to these cells as LOGC, DFF,
REG, and RAM respectively in the rest of the paper. The relative
size of these cells are 1x1, 1x1, 8x32, and 16x64 thus their area
is in the ratio 1:1:256:1024 respectively. Except LOGC, all other
cell types are sequential in nature. The locations where these
cells are pre-fabricated in the tile are as shown in Figure 1.
LOGC and DFF cells are fabricated in columns of height 64 each.
There are 36 and 24 columns (not all shown in Figure 1) of
LOGC and DFF cells respectively in each tile. At the center of
the tile, one RAM is fabricated and half of the columns of LOGC
and DFF each appear on both side of the RAM cell. On the right
end of the tile, 4 REG are fabricated in 2x2 array formation. In
summary, each tile has 2304 LOGC, 1536 DFF, 4 REG and 1 RAM

cells. Clock routing constraints dictate that not more than a
few clocks can be distributed in a tile (though the platform can
have many more unique clocks). Therefore, the sequential cells
inside each tile should not require more than a given number
of unique clocks.

LCELL BRAM DFF REG

Inter-tile
space

Tile

LCELL BRAM DFF REG

Inter-tile
space

Tile

Figure 1: Structured ASIC platform.

2.2 Structured ASIC Placement
Placement on structured ASIC takes as input a) an RTL

expressed in terms of LOGC, DFF, REG, and RAM cells, b) the ar-
chitecture of the structured ASIC platform, c) Geometry infor-
mation about the tile, and d) Clock constraints at the platform
and at the tile level; and maps each cell to a pre-fabricated lo-
cation on the platform such that site compatibility as well as
clock constraints are satisfied. The objective of the placement
can be to minimize wirelength or delay of the circuit while
meeting these constraints.

Previous Work: Recent placement contest sponsored by
eASIC [3] fostered research in the field of placement for struc-
tured ASICs. Here we describe the grand prize winning entry
RegPlace [1]. Due to its availability (open source) and high
quality, we use RegPlace as our placement framework and base-
line to compare against. RegPlace first transforms the struc-
tured ASIC placement problem into simpler row-based place-
ment problem by resizing the larger cells (REG and RAM to be
unit sized and removing the physical space reserved for these

cells from the platform. Also, the clock constraints are ignored
at this stage. Existing high quality row-based placer (such as
CAPO [4], mPL6 [5] etc) is used to generate an initial place-
ment with excellent wirelength. The placement results are then
expanded to re-insert physical space removed for REG and RAM

cells while concurrently performing cut minimization due to re-
inserted space for these cells. An integer linear programming
(ILP) based clock assignment and network flow based clock le-
galization is performed to satisfy the clock constraints. Finally
wirelength reduction is performed to undo any damage due to
legalization.

3. LEAKAGE/CLOCK POWER MODEL
Leakage Power Model: The leakage power of a structured

ASIC platform is roughly proportional to the number of devices
in it. Even if no cell (in the RTL) is mapped on to a device
on the platform, the device will still consume leakage power
unless disconnected from the power supply. Existing structured
ASICs already allow power down (i.e. disconnect from power
grid) of unused devices on the platform using single-via power
programming. We assume that power-down can be performed
at two levels of granularity: a) An unused tile can be completely
powered down reducing its leakage (and dynamic) power to
zero, and b) Within a tile, an unused column can be powered
down if no functioning cells are placed in it, reducing its power
to zero. The leakage power savings achieved by power down
of a complete tile is equivalent to that achieved by individual
power down of each column in the tile individually. If the
leakage power of one column is Pcol, then the leakage power
model of the structured ASIC platform is simply the sum of
leakage power of all the columns that are not power down.

Pleak = Pcol ×
X

t∈tiles

0

B

@

X

c∈cols(t)

Ec

1

C

A
(1)

where cols(t) denotes the columns in tile t and Ec is a binary
variable whose value is 1 if the column c is powered on and
0 otherwise. From Eqn 1, it is clear that we should try to
minimize the number of columns powered up to reduce leakage
power.

Clock Power Model: Unlike leakage power, clock power is
largely proportional to the clock switched capacitance. Due to
stringent slew and skew constraints on the clock signal, clock
is distributed across the platform using hierarchy of high drive
power hungry buffers. To reduce clock power, the aim should
be to reduce clock network’s switched capacitance. To under-
stand the clock power model, we must first understand clock
distribution architecture. We assumed a simplistic clock distri-
bution network as depicted in Figure 2 described using 2x2 tiles
to reduce clutter. Figure 2-a depicts the platform level clock
distribution whereas Figure 2-b depicts the tile level clock dis-
tribution. The architecture we assume is based on the recent
works on clock distribution on FPGAs [6] [7].

Here, we describe the clock distribution architecture of a sin-
gle clock which is duplicated to distribute multiple clocks. In
Figure 2-a, level 1 buffer B1 inserts the clock signal at the cen-
ter of the chip that drives a horizontal spine. Each level 2 buffer
B2 distributes the clock signal to one vertical spine. Similarly,
a level 3 buffers B3 drives the clock signal into each tile. In-
side a tile, as shown in Figure 2-b, Level 4 buffers B4 drive
the DFF columns (only 1 shown) as well as REG and RAM cells.
Owing to the larger number of sequential elements in RAM and
REG cells, multiple B4 buffers are required to drive them (only

396

B3
B4 B4

DFF

DFF

DFF

RAM

B4

REG

B2B2

B2B2

B3 B3

B3 B3

B1

a) b)

B3
B4 B4

DFF

DFF

DFF

RAM

B4

REG

B3
B4 B4

DFF

DFF

DFF

RAM

B4

REG

B2B2

B2B2

B3 B3

B3 B3

B1
B2B2

B2B2

B3 B3

B3 B3

B1

a) b)

Figure 2: Clock distribution: a) Platform b) Tile level

1 shown). We assume that each B4 buffer can drive only as
many sequential elements as are in a DFF column. To distribute
multiple clocks, the B1 and B2 clock buffers can be replicated
for each clock signal. Due to routing constraints, typically only
a subset of platform level clocks can be routed into each tile.
Each B3 and B4 clock buffers is replicated as many times as
the size of subset of clocks that can be routed in each tile. We
assume that power-down of clock signal can be performed at
three levels of granularity: a) An unused vertical spine’s clock
can be disconnected if all of the tiles driven by this spine are
unused. b) An unused tile can be disconnected if all cells in it
are unused, and c) within the tile, the clock driving each DFF

column, REG, RAM cell can be disconnected.
For platform with WxH tiles (instead of 2x2 in Figure 2), let

CG clocks at platform level and CT clocks at tile level be sup-
ported. Further, let the number of equivalent (after scaling for
larger sizes of REG and RAM) number of DFF columns be S each
containing N sequential elements. Under these assumptions,
Table 1, shows the constituents of the clock network. Columns
2 contains the number of buffer needed whereas column 3 shows
the capacitive load on each of these buffers. The last column
shows the total switched capacitance seen by the corresponding
level of clock buffers when the input capacitance of an entity
X is denoted by LX .

Table 1: Clock Tree Distribution Characteristics
Buffer Number Each Total
Type Instance Load Load

B1 CG 2 W LB2 2 W CG LB2

B2 CG 2 W 0.5 H LB3 2 W H CG LB3

B3 CT W H S LB4 W H S CT LB4

B4 CT W H S N LDF F W H S N CT LDF F

Using the clock network architecture and Table 1, the total
clock power can be written as

Pclk =

CG
X

i=0

LB1 +

2W
X

j=0

EijLB2 +

0.5H
X

k=0

(EijEjkLB3)

!!

+

X

t∈tiles

CT
X

m=0

S
X

n=0

(EmnLB4 + EmnLDF F)

!!

(2)

where all Exy are boolean variables. Eij is 1 if clock i drives
spine j, Ejk is 1 if spine j drives tile k on that spine, Emn is
1 if clock m in the tile drives the column n. The first term in
Equation 2 is the total switched capacitance of CG global clocks
and the second term is the total switched capacitance within a
tile, summed over all the tiles. Selective power down of unused
components (spine, tile, column) modulate the values of these
binary variable thus changing the clock power.

4. LOW POWER PLACEMENT
We now introduce the problem being tackled in this work.
Given a structured ASIC platform and a design, perform cell

placement to minimize the clock and leakage power consump-

tion by maximizing the components that can be powered down.

Power reduction should not degrade the wirelength by more than

a given budget.

4.1 Overall Flow
Figure 3, shows our complete flow. The rectangular blocks

represent our new contributions whereas the oval blocks repre-
sent the steps in RegPlace [1], an existing open source placer
for structured ASICs. After describing the overall flow in this
section, each rectangular block will be explained in more details
in next few subsections.

Spine & Tile
Reduction

Column Minimization

Column Assignment

Global Placement
Clock Legalization

Wirelength
Reduction

RTL Platform

OUT

Figure 3: Our placement flow. Blue rectangles are our
new contributions. Grey ovals are from [1].

Given the input netlist and the platform, we minimize the
vertical spines and tiles that must remain powered up by gener-
ating new constraints for global placer. This step works under
a given wirelength increase budget. Global placement is then
executed on the design followed by clock legalization. In the
next step, we minimize the number of columns that must stay
powered on by avoiding scenarios where the number of cells in
a tile is slightly more than integral multiple of number of cells
that can be accommodated in a column, thereby requiring an-
other column. Finally, we cluster and assign the cells into as
few columns as possible while minimizing wirelength change.

4.2 Spine and Tile Reduction
To mark a vertical spine as unused, we must ensure that all

the tiles driven by the spine are marked as unused. To mark
a tile as unused, we must make sure that no cell is placed in
it. If the design to be placed is much smaller than the physical
platform, naturally there would be many such tiles. However,
our aim is to maximize such unused tiles by identifying those
which would have very low number of cells in them and evicting
these cells without much wirelength penalty.

Algorithm 1 depicts our overall spines and tile reduction
strategy. We performed rough placement to generate a coarse
density map ensuring that the cut-line during partitioning co-
incide with the tile boundaries (Line 1). The wirelength in-
crease budget is set to k% of the original wirelength (Line 2).
For each horizontal trunk in the platform, we go over all the
vertical spines connected to it. These spines are sorted in non-
decreasing order of the number of cells in all the tiles driven by
the corresponding vertical spine (Line 4-5). Then, the sorted
set of spines is iterated over while trying to evict the cells in
it using procedure EvictSpine. The scheme for reducing the
number of tiles is also similar (Line 8-10) wherein the proce-
dure EvictTile is executed for each tile in sorted order. We
now describe Algorithm 2 and Algorithm 3 which implement
procedure EvictSpine and EvictTile respectively.

397

Algorithm 1 Vertical Spine and Tile Minimization

1: Perform Rough Placement
2: BUDGET = k % of wirelength of design {Minimize spine

utilization in next block}
3: for all Horizontal Spine hs do
4: CONN = All vertical spines connected to hs

5: Sort CONN by number of cells in it
6: for all Vertical Spine vs connected to CONN do
7: EvictSpine(vs, BUDGET)

{Minimize tile utilization in next block}
8: T = All tiles in platform
9: Sort TILES by number of cells in it

10: for all Tile t in TILES do
11: EvictTile(vs, BUDGET)

Algorithm 2 EvictSpine(Spine S, BUDGET)

1: SL(SR) = Spine on left(right) of S
2: REST = Tiles in SL ∪ SR

3: for all Tile t in S do
4: NGHBR = All tiles in REST <= 1 tile away from t

5: Build flow between t and NGHBR
6: Add Constraint for WL Increase < BUDGET

7: if Flow Possible then
8: Move cells from tiles in S to SL or SR

Algorithm 2 which tries to evict a given spine works as fol-
lows. For a target current spine being evicted, the list of all
tiles in the spines to the left and right of it is obtained (Lines
1-2). Next we write a network flow formulation where all the
cells from each tile belonging to the current spine are moved
out of the spine. For each tile in the spine, the possible loca-
tion of interest are all the tile adjacent to it except itself (Line
3-5). We limit the cells to move to only adjacent tiles to reduce
wirelength penalty. The objective of the network flow is to min-
imize the estimated wirelength increase due to the movement.
An additional constraint is added to bound the maximum ac-
ceptable wirelength increase (Line 6). If the network flow is
possible, the spine S can be evicted and its cells are moved out.

Algorithm 3 EvictTile (tile T, BUDGET)

1: Get xAvg = average X coordinate of cells in T

2: Get yAvg = average Y coordinate of cells in T

3: Compute Up/Dn/Lf/RtConn for T

4: NGHBR = All neighbors of tiles T

5: for all tiles n in NGHBR do
6: if n is an empty tile, continue;
7: moveX = n’s center X coordinate - xAvg
8: moveY = n’s center Y coordinate - yAvg
9: WLINCR = moveX × (LfConn - RtConn)

10: WLINCR += moveY × (DnConn - UpConn)
11: Add flow from T to n with cost WLINCR

12: Add Constraint for WL Increase < BUDGET

13: if Flow Possible then
14: Evict T and move cells

Algorithm 2 can only evict one whole spine at a time. How-
ever, there can be many scenarios where a few (but not all) tiles
of a spine have small number of cells in it and can be evicted.
For this, Algorithm 3 works on each tile in the design. For each
tile, we find the average x and y coordinate (XAvg and YAvg) of
the cells in it (Line 1-2). We also compute four numbers (Rt-

Conn, UpConn, LfConn, DnConn) which represent the number
of nets incident on any cell in the tile whose bounding box is
strictly to the right, above, on left, or below this tile (Line 3).
The intuition is that if all the cells of this tile are moved to
another tile, the increase in wirelength by this move can be ap-
proximated by combination of these numbers. Next, we iterate
over all eight physically contiguous tiles around the target tile
(Line 5) which are the possible destinations while computing
the estimated wirelength increase (Line 7-10). A network flow
problem is built and if there is a legal solution to it, the tile T

can be evicted (Line 13-14).
After the termination of Algorithm 1, we obtain the largest

set of complete spines and tiles which can be evicted under
given wirelength increase budget. Based on this information,
we transform the placement problem by adding fixed blockages
covering the unused tiles. This transformed placement problem
becomes the input to RegPlace global placer.

4.3 Column Minimization
After the global placement and clock legalization has been

performed, combinational (i.e. LOGC) and sequential cells be-
longing to multiple clocks could be distributed in each tile. To
exploit this flexibility, we apply Algorithm 4 to a rectangular
peephole M tiles wide and N tiles high. Once the number of
powered up columns in the peephole is reduced, the peephole is
moved to the next adjacent position and Algorithm 4 is rerun.
If the whole platform consists tiles that is W wide and H high,
Algorithm 4 is executed W-M×H-N times. Now we describe the

Algorithm 4 Column Count Reduction

1: T = All tiles in current peephole
2: N = Maximum cells in a column
3: C = All clocks in T ∪ ”NIL”

{”NIL” Clock connects to combinational cell i.e. LOGCs}
{Let nci = cells of clock c in tile i}

4: for all Clock c ∈ C do
5: MOVES = φ

6: USED =
P

i∈T
ceil(nci/N)

7: REQD = ceil(
P

i∈T
nci)/N

8: if USED == REQD then
9: continue; {Column count already optimized}

10: for all Tile t ∈ T do
11: t.Extra = nct - N × floor(nct/N)
12: Sort T in non increasing order of Extra(t)
13: for all Tile t ∈ sorted T do
14: OTHER(t) = T - {t}. Sort w.r.t. distance from t.
15: for all Tile o ∈ sorted OTHER do
16: trans = min(t.Extra, N-o.Extra)
17: MOVES = MOVES ∪ {trans from t to o}
18: if t.Extra == 0 then
19: break
20: Implement all MOVES stored

steps involved in one invocation: We add a dummy clock called
”NIL”which connects to all combinational cells (i.e. LOGC cells)
(Line 3). The optimization is performed for one clock type at
a time (Line 4). The maximum number of cells that can be
accommodated in a column is given as N (Line 2). We prune
the cases for which the number of columns occupied is already
optimal (Line 6-9). For each tile in the peephole, we compute
the minimum count of cells (Extra) that, when removed, leave
an integral multiple of N cells (Line 10-11). All the tiles in the
peephole are sorted according to non-decreasing Extra count

398

(Line 12). For each tile, every tile except itself is a prospective
tile in which the Extra cells can be moved (Line 14). To reduce
the impact on wirelength increase, we sort the prospective tiles
according to distance from the current tile (Line 15) and try
pushing the Extra cells of current tile into them as long as this
move does not create new columns in the prospective tile (Line
17-18). Once all the moves to reduce the column count for a
clock are recorded, we actually implement them by moving the
cells among the tiles. When moving a cell from tile A to tile B,
its new location in tile B is chosen as the point closest to the
original location in tile A.

4.4 Column Assignment
After the termination of Algorithm 4, the decision regarding

clustering of these cells into columns and how the columns for
the different clocks are relatively placed, still needs to be made.
For this, we use Algorithm 5 which runs on one tile at a time
and packs the cells into individual columns. Algorithm 5 first

Algorithm 5 WL Aware Column Assignment

1: COLS = Columns in the tile
2: N = Capacity of each column
3: BINS = φ

4: C = All clocks in tile ∪ ”NIL”
{”NIL” Clock connects to combinational cell i.e. LOGCs}

5: for all Clock c ∈ C do
6: CLSTR = φ

7: L = cells of clock c from left to right
8: for all Cell i ∈ L do
9: CLSTR = CLSTR ∪ i

10: if size of CLSTR == N then
11: BINS = BINS ∪ CLSTR
12: CLSTR = φ

13: Assign BINS to COLS [assignment problem].
Cost of assignment = incident wirelength.

14: Swap cells between columns of same clock to reduce WL

performs greedy clustering of cells of same clock type into bins
of size N (=capacity of each column) starting the sweep from
the left edge of the tile (Line 9-12). All the cells belonging
to one bin form one cluster and placed in one column. If the
number of bins used for packing is b and the number of columns
available in the tile is n, mapping the bins to n columns can
be cast as an Assignment Problem and solved efficiently using
Munkres algorithm (Line 13). Finally, to repair wirelength
degradation due to sub-optimal clustering of cells into columns,
cells are swapped between columns of same clock type if it
reduces wirelength.

a

b

c

de

f
a

b

c

de

f

a

b

c

de

f
a

b

c

de

f
a

c

b

de

f
a

c

b

de

f

a) Input b) Clustering

d) WL Reductionc) Colm Assign.

a

b

c

de

f
a

b

c

de

f

Figure 4: Column assignment: a) Input. b) Cells clus-
tered based on original location. c) Columns assigned
to each cluster. d) After WL reduction by swapping

Figure 4 shows an example of column packing in action. For
this example, each column can have only 2 cells. Cells driven
by the same clock type have the same shape. The cells are
divided in three bins as shown in Figure 4-b. These bins are
assigned to individual columns as shown in Figure 4-c. Finally,
cell swapping may lead to swapping of cells b and c to reduce
wirelength.

5. EXPERIMENTAL SETUP
We implemented our low power placement flow PASAP in the

C++ language inside the open source structured ASIC place-
ment tool RegPlace [1]. All experiments were run on a 16 core,
1.6 GHz, Linux workstation. We used GLPK [8] as the integer
linear programming (ILP) and network flow solver and a cus-
tom implementation of Munkres [9] algorithm for assignment
problem. The wirelength increase budget in Algorithm 1 was
set at 15%.

Platform: Two different platforms were generated by repli-
cating the tile described in Section 2.2. The details of these
platforms are in Table 2. Columns 2 and 3 show the number
of times the tile is replicated in horizontal and vertical direc-
tion respectively. Rest of the columns indicate the maximum
number of LOGC, DFF, REG, RAM that can be accommodated in
the platform.

Table 2: Platform Characteristics
Plat Rep Rep Max Max Max Max Max

Name X Y LOGC DFF REG RAM CLK
A 20 22 1M 675k 1760 440 32
B 22 24 1.2M 811k 2112 528 32

Designs: The benchmarks used were original released by
eASIC for the placement contest. Table 3 shows the breakup of
the design in terms of constituent cells. The total number of
cells ranges between 125K to over 1 million. Column 6 shows
the number of global clock signals used.

Table 3: Benchmark Characteristics
Name LOGC DFF REG RAM CLK
easic1 832,824 87,052 110 172 18
easic2 812,200 45,478 175 686 7
easic3 961,063 52,780 192 0 3
easic4 102,038 23,330 0 44 7
easic5 913,853 84,505 145 262 26

6. RESULTS
Table 4 describes our experimental results comparing the

placement generated by RegPlace to PASAP placement. The
benchmark name in the first column also shows the platform
on which the benchmark was placed. For example easic4B

identifies that it is the benchmark easic4 placed on platform
B. The metrics being compared for the two placement are :
a) unused spines, b) unused tiles, c) unused columns, d) wire-
length and e) total CPU runtime. For each of these metrics,
three sub-columns are shown in Table 4. These sub-columns
depict the value obtained using RegPlace (RP in table), value
obtained using PASAP (PA in table) and the difference between
these two solutions respectively.

The efficacy of PASAP to increase the number of unused spines,
tiles and columns is evident from Table 4. Due to the different
benchmark sizes and utilization ratio, the numbers vary widely
among the different circuits. Therefore, in our discussion, we
will primarily focus on the improvement/penalty summed over
all the benchmarks. First of all, we note that over all the bench-
marks, nearly 58% extra clock spines can be turned off using

399

Table 4: Increase in number of spine, tile and column that can be powered down for various benchmarks.
Bench # Unused Spines # Unused Tiles # Unused Columns Wirelength (x106) CPU Runtime (s)
Name RP PA ∆% RP PA ∆% RP PA ∆% RP PA ∆% RP PA ∆%

easic1A 0 0 0 0 10 inf 12 1940 16066 13.2 15.5 17.3 8747 9968 13.9
easic1B 5 8 60.0 48 89 85.4 3112 7829 151 13.7 17.0 23.9 9984 11076 10.9
easic2A 0 3 inf 8 33 312.5 1086 3748 245 24.8 28.8 15.7 5974 8495 42.2
easic2B 8 12 50.0 88 119 35.2 5728 9163 60 26.1 29.6 13.3 8503 10348 21.7
easic3B 0 0 0 11 52 372.7 814 5285 549 19.7 22.4 13.9 5115 7098 38.7
easic4A 35 53 51.4 325 369 13.5 23185 24056 8.4 2.1 2.8 34.3 543 825 51.7
easic4B 38 56 47.3 417 455 9.1 25473 27014 2.8 2.2 3.0 38.5 562 741 31.9
easic5B 0 4 inf 19 54 184.2 2265 358 36.3 15.9 18.3 15.4 6409 10701 66.9

Total: 86 136 58.1 916 1179 28.7 59675 84837 42.2 118.0 137.8 16.7 45838 59253 29.3

our method. Turning off spine directly corresponds to lower
clock capacitance. Benchmarks easic1A and easic3B has such
high utilization ratio that both RegPlace and PASAP cannot
find even one unused spine. Similarly, the number of unused
tiles can be increased by around 29% thus giving significant
enhancement in the power saving ability. As for the number of
unused columns, their number improve by approximately 42%
using PASAP as compared to RegPlace. The very low improve-
ment in the number of column used for benchmark easic4A and
easic4B is due to its very small size which implies even by using
RegPlace, most of the columns are unused. The above improve-
ment in increasing the count of unused spine, tiles and column
comes at a cost as seen in the wirelength and runtime penalty.
The wirelength of the designs increase by approximately 17%.
Due to the runtime associated with a rough placement gener-
ation and aggressive spine/tile/column reduction, PASAP takes
approximately 30% more runtime that RegPlace. Though run-
time degradation is not insignificant, we believe it is a fair
trade-off for the kind of power savings possible with PASAP.

To compare the power reduction, the change in placement
metrics from Table 4 must be converted to clock and leakage
power. Using the relation derived in Eqn 1, the leakage power
saving achieved by performing placement using PASAP as com-
pared to RegPlace is plotted in Figure 5. Each column in
Figure 5 corresponds to one benchmark with the exception of
last column which shows the average savings. PASAP reduces
the leakage power in the range of 7% to 40% with an average
value of 17%.

����� �� �� �� �� �
� �� �� �

�� � � �� � � � � � � � � � � � ��
B e n c h m a r k (e a s ic *)

L e a k a g e R e d u c tio n (in %)

Figure 5: Leakage power savings for placement gener-
ated by PASAP compared to RegPlace.

Next we compare the clock power reduction due to PASAP. By
aggressive reduction in the number of spines, tiles and columns
in which the clock signal needs to be distributed, PASAP can
significantly minimize the clock switched capacitance. Based
on the clock power expression derived in Eqn 2, we plotted the
clock power reduction achieved by PASAP for different bench-
marks in Figure 6. PASAP reduces the clock power of different
benchmark circuits in the range of 20% to 60% with an aver-
age value of 32%. The clock power was computed assuming the

frequencies of all the clock signal in the structured ASIC is the
same.

	
	� 	� 	 	� 	
� 	� 	

�
 � �� � � � � � � � � � ��
B e n c h m a r k (e a s ic *)

C lo c k P o w e r R e d u c tio n (in %)

Figure 6: Clock power savings for placement generated
by PASAP compared to RegPlace.

7. CONCLUSIONS
In this paper, we proposed power aware structured ASIC

placement (PASAP) flow. For a given structured ASIC archi-
tecture, PASAP minimizes the leakage power and clock power
dissipation by maximizing the devices that can be powered
down and reducing the clock network’s switched capacitance
respectively. We proposed algorithms to minimize the number
of clock spines, tiles (the building block of structured ASIC
platform) and columns that need to be powered on, without
significantly impacting the wirelength of the design. Experi-
mental results on large testcases show that PASAP can reduce
the leakage and clock power consumption by as much as 40%
and 60% respectively with 17% penalty in wirelength and 30%
longer placer runtime.

8. REFERENCES
[1] A. Chakraborty et al., “Regplace: A high quality open-source

placement framework for structured asics,” in Design Automation
Conference, pp. 442–447, ACM, 2009.

[2] H. Schmit et al., “Placement Challenges for Structured ASICs,” in
International Symposium on Physical design, pp. 84–86, ACM,
2008.

[3] “eASIC Corporate Website.” http://www.easic.com/.

[4] J. A. Roy et al., “Capo: Robust and Scalable Open-source min-cut
Floorplacer,” in International Symposium on Physical design,
pp. 224–226, ACM, 2005.

[5] T. F. Chan et al., “mpl6: Enhanced Multilevel Mixed-size
Placement,” in International Symposium on Physical design,
pp. 212–214, ACM, 2006.

[6] Q. Wang et al., “Clock power reduction for virtex-5 fpgas,” in
Proceeding of the International Symposium on Field
Programmable Gate Arrays, (New York, NY, USA), pp. 13–22,
ACM, 2009.

[7] L. Wang et al., “Fpga dynamic power minimization through
placement and routing constraints,” EURASIP J. Embedded Syst.,
vol. 2006, no. 1, pp. 7–7, 2006.

[8] “GNU Linear Programming Kit.”
http://www.gnu.org/software/glpk/.

[9] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

400

