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Abstract—Networks-on-chip (NoCs) may interface with lots
of synchronous dynamic random access memories (SDRAM) to
provide enough memory bandwidth and guaranteed quality-of-
service for future systems-on-chip (SoCs). SDRAM is commonly
controlled by a memory subsystem that schedules memory
requests to improve memory efficiency and latency. However, a
memory subsystem is still a performance bottleneck in the entire
NoC. Therefore, memory-aware NoC optimization has attracted
considerable attention. This paper presents a NoC router with
an explicit SDRAM-aware flow control. Based on priority-
based arbitration, our SDRAM-aware flow controller schedules
memory requests to prevent bank conflict, data contention, and
short turn-around bank interleaving. Moreover, our multi-stage
scheduling scheme further improves memory performance and
saves NoC hardware costs. Experimental results show that our
cost-efficient SDRAM-aware NoC design significantly improves
memory latency and utilization compared to the conventional
NoC design with no SDRAM-aware router.

Index Terms—Flow control, memory, networks-on-chip, router,
scheduler.

I. Introduction

AS SILICON technology enters the nanometer-scale era,
thousands of core may be integrated into a single system-

on-chip (SoC) for enhanced performance and functionality by
2015 [2]. Global interconnection is a key potential bottle-
neck to the advancing performance of the nanometer SoCs.
Networks-on-chip (NoCs) has been proposed as a promising
alternative to the conventional point-to-point interconnection
and shared bus architecture [3], [4].

Memory bandwidth to feed a number of cores is another key
issue in the modern and future SoC designs. A synchronous
dynamic random access memory (SDRAM) is commonly used
as an off-chip shared memory since it provides high memory
capacity and infinite endurance for modern SoCs. However,
current SoCs mostly interface with a single or dual SDRAM
since the number of pin assigned to interface with SDRAMs
is limited. Consequently, there would be insufficient memory
bandwidth to keep up with a lot of high speed cores. For
example, Intel Teraflop which is the state-of-the-art NoC and
composed of 80 cores is supported by a dual shared memory
[6]. If cores will have access to the single or dual memory at
the same time, memory latency will be too long to provide
real-time computing.
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As an effective solution of interconnection and memory
bandwidth, 3-D NoC based on through-silicon-via technology
[5] is gaining momentum and industry adoption. 3-D NoC
can be embedded with many SDRAMs on top of processing
elements at different layers [7]. It achieves higher system
performance and more reliable electrical features than the con-
ventional 2-D NoC that interfaces with a single or dual external
SDRAM. Furthermore, it provides low power consumption,
low electromagnetic interference, small die and printed circuit
board area, and low pin density [7].

Most existing 2-D/3-D NoCs with many cores require a
dedicated memory subsystem to control SDRAMs. A memory
subsystem schedules SDRAM requests and generates SDRAM
interface signals. A memory subsystem is one of the most
important components in most SoCs since the performance of
the entire system depends on its performance. However, the
conventional memory subsystem still underperforms due to
special operation flows of SDRAM [8] and dynamic accesses
by various processing elements. For example, double data rate
(DDR) II SDRAM utilization gets deteriorated up to 55%
in a digital television (DTV) application [9], where memory
utilization is defined as the number of clock cycles used for
data transfer divided by the number of total clock cycles.
Moreover, the corresponding number of memory subsystems
should also be equipped to control a number of SDRAMs. Our
experimental results show that the gate count of a single mem-
ory subsystem may occupy over 35% of the entire 3 × 3 NoC
platform, thus the NoC design cost will rapidly increase by
more memory subsystems. Therefore, considerable attention
has been shifted toward memory-aware NoC exploration to
improve memory utilization and latency with the economical
design cost of NoC platform [25].

This paper presents an SDRAM-aware NoC router to im-
prove SDRAM utilization and latency. It also decouples the
NoC design cost from the number of SDRAM. Our key
ideas are twofold. First, if a NoC router schedules SDRAM
access packets, the packets arrive at a memory subsystem
in the order that is friendly to SDRAM operations. Since
our SDRAM-aware router uses existing resources to schedule
the packets, e.g., input buffers for storing blocked packets
or other flow-control mechanisms, additional circuitry is tiny.
On the contrary, a heavy reordering buffer and a complex
scheduler are removed in a memory subsystem. Second, a
scheduling scheme performed by multiple SDRAM-aware
routers outperforms a scheduling scheme performed by a
single memory subsystem. The reason is that the performance
of single-stage scheduling mainly depends on the number of
port/buffer in a single memory subsystem. However, the multi-
stage scheduling uses all of the buffers in multiple routers
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Fig. 1. SDRAM architecture and operation.

to schedule SDRAM access packets/requests. Based on these
ideas, the major novelty and contribution of this paper include
the following.

1) We propose a novel NoC router architecture with explicit
SDRAM-aware flow control to schedule SDRAM access
requests instead of using the conventional memory sub-
system.

2) We propose SDRAM-aware flow control algorithms
to resolve problems of bank conflict, data contention,
and short turn-around bank interleaving, which employs
priority-based arbitration and multi-stage scheduling.

3) We show that a NoC design embedding our SDRAM-
aware router achieves higher memory utilization, shorter
memory latency, and cheaper design cost than the con-
ventional NoC design with an SDRAM-unaware router.

4) We show that performance of our SDRAM-aware router
gets better for complex NoC architectures and high-
performance SDRAM.

To the best of our knowledge, this is the first work
that addresses an SDRAM-aware router for NoC. The rest
of this paper is organized as follows. In the next section,
we survey related works. In Section III, we review basic
SDRAM operation principles and SDRAM request scheduling.
In Section IV, a problem of the conventional SDRAM-unaware
NoC router is presented and our basic solution is proposed.
Section V presents detailed description of our SDRAM-aware
router. Experimental results are shown in Section VI. Finally,
Section VII concludes this paper.

II. Related Works

3-D NoC can be embedded with more SDRAMs than the
conventional 2-D NoC commonly interfacing with single or
dual external SDRAMs since it has no limitation of the number
of pins. As a result, 3-D NoC provides more memory band-
width, shorter memory latency, and less number of timing-
critical paths. However, the corresponding number of a mem-
ory subsystem is also required to manage a lot of SDRAMs. A
memory subsystem usually consists of three parts, i.e., a buffer,
a SDRAM scheduler, and a SDRAM interface signal generator,

where a depth of buffer and an SDRAM scheduler for reorder-
ing dynamic SDRAM access requests are key components
for higher memory utilization and shorter memory latency.
A memory scheduler proposed in [10] supports preemption
and reordering to optimize offered net bandwidth and average
latency. Schedulers discussed in [11] and [12] support preemp-
tion for high-priority requests to decouple latency and rate.
In [13], PREDATOR is proposed with two step approaches:
grouping memory requests and predictable arbitration for
the group. A memory scheduler proposed in [14] adopts an
adaptive history-based scheduler that uses a history of recently
scheduled operations to improve memory efficiency.

Flow control in NoC is on how network resources, e.g.,
channel bandwidth, buffer capacity, and control state, are
allocated to packets traversing a network. In previous works,
congestion control is well studied for macro-networks. For
example, decentralized control and predictive explicit-rate
control are developed in [15], where sources adjust their traffic
generation rates based on feedbacks received from bottleneck
links. In [16], a predictive flow controller managing a packet
injection rate to regulate the number of packet is proposed,
based on traffic sources and router models. To minimize
overall execution time and link utilization of applications,
optimal link scheduling and shared buffer router architecture
are proposed in [17]. An open-loop flow control scheme is
proposed in [18] to reduce conflicts of data transfers from
multiple memory modules to the same masters.

Our SDRAM-aware flow-control mechanism included in
multiple NoC routers schedules SDRAM access packets based
on priority-based arbitration. It lets the order of packets be
friendly with SDRAM operations and works together with
other flow control mechanisms mentioned above and with
various network routing schemes. Therefore, our SDRAM-
aware NoC design achieves higher memory utilization, shorter
latency, and cheaper design cost.

III. Preliminaries

A. Basic SDRAM Operation

SDRAM has a 3-D structure, i.e., a bank, a row, and a col-
umn as shown in Fig. 1. Basic commands to access SDRAM
are activation (ACT), read/write (R/W), and precharge (PRE),
where the ACT command is executed with a bank address
(BA) and a row address (RA), the R/W command is executed
with a BA and a column address (CA), and the PRE command
is executed only with a BA. A bank becomes active by an ACT
command and idle by a PRE command. An R/W command
can be executed only after a bank is activated. In Fig. 1, when
a bank is activated, one row data of the bank move to a row
buffer of the bank. It takes tRCD to complete an ACT command.
Timing parameters of DDR I, II, and III SDRAM used in this
paper is shown in Table I [8]. The faster the clock rate is
used in DDR SDRAM, the more clock cycles are required to
complete SDRAM operations (Table I). For example, DDR I
SDRAM working at 133 MHz clock frequency spends only
two clock cycles activating a bank, while DDR III SDRAM
working at 800 MHz clock frequency spends 11 clock cycles
activating a bank. Then, an R/W command is executed on
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TABLE I

Timing Parameter of DDR I, IIa
, and IIIa

SDRAM [8]

Timing
Parameter

DDR I SDRAM DDR II SDRAM DDR III SDRAM

133 MHz 167 MHz 200 MHz 200 MHz 267 MHz 333 MHz 400 MHz 400 MHz 533 MHz 667 MHz 800 MHz
CLb 2 2.5 3 3 4 4 6 6 8 10 11
WLc 1 1 1 2 3 3 5 5 6 7 8
tRCD

d 2 3 3 3 4 4 6 6 8 10 11
tCCD

e 1 1 1 2 2 2 2 4 4 4 4
tRP

f 2 3 3 3 4 4 6 6 8 9 11
tWR

g 2 3 3 3 4 5 6 6 8 10 12
tWTR

h 1 1 2 2 2 3 3 4 4 5 6
tRTW

i − − − − − − − 7 8 9 9
a We assume that posted CAS additive latency is 0 in DDR II/III SDRAM.
b CAS latency or read latency.
c WL.
d Row access strobe (RAS) to CAS delay time.
e CAS-to-CAS command delay.
f Row PRE time.
g Write recovery (WR) time.
h Internal write-to-read (WTR) command delay time.
i Internal read-to-write (RTW) command delay time for DDR III SDRAM. If burst length (BL) is 8, it is CL + tCCD + 2 − WL, and if BL is 4, it is (= CL + tCCD/2 + 2 − WL).
In this table, BL is 8.
Row precharge time (RP), row access strobe to column access strobe delay time (RCD)

the active row buffer. After either read latency called column
access strobe (CAS) latency (CL) or write latency (WL), suc-
cessive data go from or to SDRAM. Finally, a PRE command
is executed to deactivate the active row buffer in the bank, i.e.,
data in the row buffer move to the bank of the row buffer. It
takes the bank state tRP to become an idle state.

B. SDRAM Scheduling

SDRAM consists of independent multiple banks whereas
address and data pin/wire resources serialize accesses to differ-
ent banks, as shown in Fig. 1. The benefit of this architecture
is that pin/wire resources between SDRAM and SoC can be
saved and commands to different banks can be pipelined, i.e.,
while data are transferred to or from any bank, the rest of the
bank becomes idle and active for the latter request. Based on
this principle, memory subsystems schedule SDRAM access
requests. However, improvement of memory performance is
still limited due to special operation flows of SDRAMs and
clock cycles wasted by timing constraints in Table I. Moreover,
it is much worse in a high performance SDRAM. Main factors
which deteriorate memory performance are bank conflict, data
contention, and short turn-around bank interleaving explained
in the next three sections.

1) Bank Conflict: Continuously accessing one bank with
different RAs is called bank conflict, which is the most critical
to SDRAM performance. Since a bank activated by the former
request should get idle and then active for the latter request
again, a lot of clock cycles are required to complete these
operations. For example, in Fig. 2, there are two SDRAM
schedulers reordering four read requests, i.e., read 1 (RA 0,
BA 0, CA 0), read 2 (RA 1, BA 0, CA 0), read 3 (RA 0,
BA 1, CA 0), and read 4 (RA 1, BA 1, CA 0). We assume
that all schedulers work for DDR II SDRAM at 333 MHz clock
frequency. In Fig. 2(a), let them be scheduled in the order, read
1, read 2, read 3, and read 4 by scheduler 1. After performing
read 1, read 2 cannot be immediately executed since a row
buffer of bank 0 is already occupied by data of RA 0. Hence,
a PRE command should release the open row buffer of bank 0

and then an ACT command should be executed to fill the row
buffer of bank 0 with data of RA 1. On the contrary, read 3
can be pipelined, called bank interleaving, since it has different
BA with read 2. As shown in Fig. 2(a), while the bank 0 is
activated and accessed for read 2, bank 1 gets activated for
read 3. As a result, data 3 accessed by read 3 are generated
with no loss of clock cycle. The last read 4 conflicts with read
3 since they have the same BAs, but different RAs.

On the contrary, scheduler 2 changes the execution order
of four read requests read 1, read 3, read 2, and read 4 as
shown in Fig. 2(b). Since this order does not cause any bank
conflict, all read requests are pipelined. That means the second
SDRAM scheduler lets all requests to complete faster and the
latency of data 3 and 4 to be shorter than the first SDRAM
scheduler. In this example, the first scheduler achieves 9.5%
(=4 data/42 clock cycles) memory utilization and the second
scheduler achieves 13.3% (=4 data/30 clock cycles) memory
utilization. Therefore, the second one is more desirable.

2) Data Contention: A case of a write request followed
by a read request or a read request followed by a write request
is called data contention. Data pins/wires are bidirectional
in most SDRAMs while control and address pins/wires are
unidirectional. As a result, input data may be collided with
output data. To transfer data to SDRAM after receiving data
from SDRAM, there should be at least one clock cycle interval
between writing data and reading data in DDR I/II SDRAM.
Since internal RTW command delay time (tRTW) is required in
DDR III SDRAM, as shown in Table I, an interval between
read data and write data happens up to two clock cycles. tRTW

is CL+tCCD +2−WL if BL is 8 or tRTW is CL+tCCD/2+2−WL
if BL is 4. Hence, data contention is naturally hidden behind
this delay time in DDR III SDRAM.

On the contrary, a read command following a write com-
mand needs internal WTR command delay time (tWTR) to be
executed. Then, after read latency or CL, reading data can
be received from SDRAM. WTR data contention is naturally
hidden behind tWTR and CL, but they cause memory utilization
and memory latency degraded critically. Therefore, continu-
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Fig. 2. Examples of bank conflict and interleaving for DDR II SDRAM at 333 MHz. (a) Scheduler 1: read 1 (RA 0, BA 0, CA 0), read 2 (RA 1, BA 0, CA
0), read 3 (RA 0, BA 1, CA 0), and read 4 (RA 1, BA 1, CA 0). (b) Scheduler 2: read 1 (RA 0, BA 0, CA 0), read 3 (RA 0, BA 1, CA 0), read 2 (RA 1,
BA 0, CA 0), and read 4 (RA 1, BA 1, CA 0).

ous read or write requests are preferred to access SDRAM
efficiently.

For example, in Fig. 3, there are two SDRAM schedulers
reordering two write requests and two read requests, i.e. write
1 (RA 0, BA 0, CA 1), read 2 (RA 0, BA 0, CA 2), write
3 (RA 0, BA 0, CA 3), and read 4 (RA 0, BA 0, CA 4).
All schedulers interface with DDR II SDRAM working at
266 MHz clock frequency. As shown in Fig. 3(a), let them
scheduled in the order, write 1, read 2, write 3, and read 4
by scheduler 1. In this figure, read 2 cannot be immediately
performed after writing all data 1 since tWTR is required to
accept the next read command. Furthermore, since data 2 are
received from SDRAM after read latency or CL, a read request
following a write request wastes total tWTR and CL cycles even
if bank conflict does not happen between two requests. If both
bank conflict and data contention happen simultaneously, bank
conflict is commonly prioritized. Since bank conflict wastes
more clock cycles than data contention, data contention is
hidden behind bank conflict. On the other hand, a write request
following a read request has no internal command delays in
DDR I/II SDRAM. Instead, a write command performing write
3 should be given to DDR SDRAM when it does not cause
any collision with data 2. Most DDR I/II SDRAM schedulers
get at least one clock cycle interval between read data and
write data. If DDR III SDRAM is used, data contention is
hidden naturally behind tRTW. The last read 4 requires both
tWTR and CL before transferring data 4.

On the contrary, scheduler 2 changes the order of two write
requests and two read requests read 2, read 4, write 1, and
write 3 as shown in Fig. 3(b). Since this order causes one
data contention wasting just one clock cycle, all R/W requests
are performed faster than scheduler 1. In common SDRAM
operations, after writing data 3, WR time (tWR) is required to
accept a PRE command. Scheduler 1 and scheduler 2 take 28
and 20 clock cycles, respectively, until bank 0 becomes idle
after performing all requests. As a result, scheduler 1 achieves
14.3% (=4 data/28 clock cycles) memory utilization and

scheduler 2 achieves 20% (=4 data/20 clock cycles) memory
utilization. Therefore, continuous read or write requests are
encouraged to access SDRAM efficiently.

3) Short Turn-Around Bank Interleaving: A bank inter-
leaving approach as a solution of bank conflict is the efficient
technique. Hence, high memory utilization and short memory
latency can be achieved as explained in Section III-B1. How-
ever, bank interleaving may achieve little improvement, in par-
ticular, in high performance SDRAM even if bank interleaving
is performed completely. In Table I, as an operating clock of
SDRAM is faster and faster, ACT delay time (tRCD), deac-
tivation delay time (tRP), and R/W latency (CL/WL) are also
longer and longer. The long delay times let the benefit of bank
interleaving critically degraded since a bank interleaved may
not get sufficient time to be deactivated or reactivated after the
bank is accessed by the previous request with different RA.

For example, in Fig. 4, there are two SDRAM schedulers
reordering four read requests, i.e., read 1 (RA 0, BA 0, CA 0),
read 2 (RA 0, BA 1, CA 0), read 3 (RA 1, BA 0, CA 0), and
read 4 (RA 0, BA 2, CA 0). We assume that all schedulers
work for DDR III SDRAM at 800 MHz clock frequency. In
Fig. 4(a), let them be scheduled in the order, read 1, read 2,
read 3, and read 4 by scheduler 1 such that all read requests
are performed without bank conflict. After performing read
1, bank 0 is deactivated and read 2 starts to receive data 2.
Then, read 3 waits until all data 2 are received. However,
read 3 accessing bank 0 cannot be performed even if read 2
is done and the relation between read 2 and read 3 is bank
interleaving. The reason is that bank 0 accessed by read 1
is not deactivated due to too long tRP, i.e., operations for
read 3 such as deactivation, reactivation, and R/W cannot be
hidden behind the process of read 2. Hence, while bank 0 is
deactivated, reactivated with data of RA 1 and ready to transfer
data 3, any data cannot be transferred or received from other
banks, which makes memory utilization and latency degraded.

On the contrary, scheduler 2 changes the execution order
of read 3 and read 4 as shown in Fig. 4(b). As a result,



1576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

Fig. 3. Examples of data contention for DDR II SDRAM at 266 MHz. (a) Scheduler 1: write 1 (RA 0, BA 0, CA 1), read 2 (RA 0, BA 0, CA 2), write 3
(RA 0, BA 0, CA 3), read 4 (RA 0, BA 0, CA 4). (b) Scheduler 2: read 2 (RA 0, BA 0, CA 2), read 4 (RA 0, BA 0, CA 4), write 1 (RA 0, BA 0, CA 1),
write 3 (RA 0, BA 0, CA 3).

read 4 accessing bank 2 can be hidden behind the process
of executing read 2 and even read 3 accessing bank 0 can
be hidden behind the process of executing read 4. If there is
another read 5 accessing bank 3 and it is performed between
read 4 and read 3, data may be transferred more continuously
with no loss of clock cycle. Consequently, memory utilizations
by scheduler 1 and scheduler 2 are 6.7% (=4 data/60 clock
cycles) and 7.4% (=4 data/54 clock cycles), respectively.
Since this problem is more serious in high performance DDR
SDRAM, a memory subsystem should check when banks get
active again even if bank interleaving is performed completely.

IV. NoC Design with SDRAM

A. Problem Description

Bank conflict and data contention frequently happen in the
conventional NoC design due to limited resources such as an
input buffer in a memory subsystem. Moreover, short turn-
around bank interleaving also happens in high performance
DDR SDRAM. Fig. 5 shows a simple example of bank conflict
in a 2 × 3 NoC design under the limited resources. This NoC
includes a single memory subsystem that consists of an input
buffer, a memory scheduler, and an SDRAM interface signal
generator. The memory scheduler reorders packets stored in
the input buffer to avoid bank conflict, data contention, and
short turn-around bank interleaving. In this figure, RxBy means
that a RA and a BA of packet are x and y, respectively. An
arrow indicates that a packet will move to the direction at the
next clock cycle. We assume that a length of all packets is
1, the memory subsystem includes a two-depth input buffer
to store two packets and the scheduler makes one of two
stored packets executed every cycle (although execution time
is actually longer than one cycle). In Fig. 5, round-robin
arbitration [19] is adopted as a flow control mechanism of
NoC routers to assign a channel and an input buffer of the next
node to one packet among several competing packets. At cycle
0, three packets, R2B0, R2B1, and R3B0 get a competition

for an advance to the router interconnected to the memory
subsystem and we assume that R2B0 wins. R0B1 is executed
in the memory subsystem. At cycle 1, R2B0 advances to the
router interconnected to the memory subsystem and then R3B1
also advances to the empty router by the advance of R2B0.
Then three packets, R2B1, R3B0, and R3B1 also get the
competition such that R3B0 wins by round-robin arbitration.
In the memory subsystem, R0B0 but not R1B1 is executed
for avoiding bank conflict since R0B1 accessing bank 0 is
performed at cycle 0. At cycle 2, R3B0 advances in the
router interconnected to the memory subsystem and R1B1 is
executed in the memory subsystem. Then, two packets, R3B1
and R2B1 get the competition such that R2B1 wins by round-
robin arbitration. At cycle 3, bank conflict happens in the
memory subsystem since current execution is a bank 0 request
and two buffers are also stored with bank 0 requests, where all
RAs are different. Although the efficient memory subsystem
is included in the NoC design, it is difficult to avoid bank
conflict completely under the limited depth of a buffer and
the dynamic SDRAM accesses of processing elements. Data
contention and short turn-around bank interleaving can happen
in the conventional NoC design by similar mechanism to this
example.

B. Basic Idea of Our Approach

In our NoC design, scheduling SDRAM request packets
is performed by multiple SDRAM-aware routers. This ar-
chitecture makes the possibility of bank conflict lower since
packets arrive at a memory subsystem in the order that is
friendly to SDRAM operations. Fig. 6 shows how NoC with
our SDRAM-aware router works well without bank conflict.
At the first competition (cycle 0) for an advance to the router
interconnected to the memory subsystem, the winner is R2B1
accessing bank 1 since the former packet (R1B0) passed in
this router accesses bank 0. The rest of packet causes bank
conflict since they R/W data in the same bank but different
RAs from the former packet. At cycle 1, R2B1 advances
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Fig. 4. Examples of short turn-around bank interleaving for DDR III SDRAM at 800 MHz. (a) Scheduler 1: read 1 (RA 0, BA 0, CA 0), read 2 (RA 0, BA
1, CA 0), read 3 (RA 1, BA 0, CA 0), and read 4 (RA 0, BA 2, CA 0). (b) Scheduler 2: read 1 (RA 0, BA 0, CA 0), read 2 (RA 0, BA 1, CA 0), read 4
(RA 0, BA 2, CA 0), and read 3 (RA 1, BA 0, CA 0).

Fig. 5. NoC router with round-robin flow control. (a) Cycle 0. (b) Cycle 1.
(c) Cycle 2. (d) Cycle 3.

to the router interconnected to the memory subsystem and
then R2B0 and R3B0 get the competition. Both can be a
winner for the next advance since they access bank 0. In
this example, R2B0 is chosen by our SDRAM-aware router.
At cycle 2, R2B0 advances to the router interconnected to
the memory subsystem and R3B1 avoiding bank conflict wins
against R3B0 for the next advance. Finally, R3B1 advances to
the router interconnected to the memory subsystem and R3B0
follows R3B1 at cycle 3. As a result, a NoC design with our
SDRAM-aware router avoids bank conflict better than a NoC
design with the conventional memory subsystem and router.

A single memory subsystem usually controls one channel
of SDRAM in the conventional NoC, which means the same
number of memory subsystem as the number of SDRAM
channel is required. Whereas it is allowable to use multiple
SDRAMs for high performance, it is not desirable to use a
corresponding number of memory subsystems. The reason is
that the memory subsystem as shown in Fig. 5 is too high
in terms of hardware cost due to the heavy input buffer and

Fig. 6. NoC router with SDRAM-aware flow control. (a) Cycle 0. (b) Cycle
1. (c) Cycle 2. (d) Cycle 3.

the complex scheduler. Furthermore, a depth of input buffer
rapidly increases as a length of packet is longer and longer
in a high definition graphics/video system. On the contrary,
the proposed architecture saves the NoC design cost since any
input buffer and any scheduler are not required in the memory
subsystem as shown in Fig. 6. Instead, a simple flow controller
is included in multiple routers, which has a very low hardware
cost compared to an input buffer and a scheduler in a memory
subsystem. In the next section, we present a novel SDRAM-
aware NoC router in detail.

V. SDRAM-Aware Router

For a wide range of applications, the proposed NoC router is
about a novel paradigm for SDRAM-aware-NoC exploration,
which has a flow-control mechanism that improves memory
utilization and memory latency with a cost-effective NoC
platform. Indeed, based on our idea present in Section IV-
B, any deterministic and adaptive routing scheme can be
combined to implement our SDRAM-aware router. Another
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Fig. 7. Proposed NoC router for mesh architecture.

Fig. 8. SDRAM-aware flow controller combined with conventional flow
controller in mesh network. (a) Serial implementation. (b) Parallel imple-
mentation.

flow-control mechanism mentioned in Section II can be also
combined to avoid deadlock and livelock [19], to make traffic
load balanced on a network [15]–[17] and to manage buffers
and channel bandwidth [18].

A. Router Description

Our NoC router consists of an input buffer, a routing logic,
a flow controller, and an output scheduler as shown in Fig. 7.
A packet is split into so-called flits (flow control digits),
which are then routed and stored in a pipelined fashion.
The input buffers are managed by a wormhole flow control
mechanism or a virtual-channel flow control mechanism and
backpressure is used to inform upstream nodes when they
must stop transmitting flits because all of the downstream
input buffers are full. For our experiment, the wormhole flow
control mechanism is implemented due to its simplicity and
wide popularity [19] and an on/off flow control mechanism
for the backpressure is employed to avoid a loss of flits.

Our SDRAM-aware router can be implemented to either
deterministic or adaptive routers according to a routing logic
that guarantees deadlock and livelock freeness. Virtual chan-
nels and deterministic dimension-ordered routings (e.g., XY
routing, odd-even routing) are commonly used to prevent
deadlock [19]. We implement XY routing that is a deter-
ministic and minimal path routing algorithm such that it
guarantees deadlock-free and livelock-free routing. In addition,
we consider an ordering issue when a master core sends a read
request to another slave core before the master core receives a
read data from one slave core or when a master core requests
another read data to a slave core in NoC employing an adaptive
router before the master core receives one read data from
the slave core. This ordering issue can be solved by [20] or
under the following constraint: a master core can send a read
request to a slave core only after the master core receives all
data requested. The latter solution is employed in our imple-
mentation. In addition, since our SDRAM-aware flow control

algorithm is performed with in-order buffers, the ordering
problem does not happen in each SDRAM-flow control.

In this router, more than two flits arriving on different
input buffers at the same time may both desire the same
channel toward a memory subsystem. In this situation, our
flow-control mechanism resolves this contention, allocating the
channel to one packet and dealing with the others, blocked
packets. Fig. 8 shows our SDRAM-aware flow controller
combined with the conventional flow controller. In Fig. 8, a
address parser sends an incoming memory request packet to
our SDRAM-aware flow controller and an incoming normal
packet to the conventional flow controller. Our SDRAM-aware
flow controller schedules the memory packets in order to
prevent bank conflict, data contention, and short turn-around
bank interleaving. In the next section, the SDRAM-aware
flow-control algorithm using a priority-based arbitration is
described minutely. Then, the resulting memory request packet
competes with normal packets by the conventional flow control
mechanism. Hence, normal packets can reach their destination
with no additional communication delay.

Fig. 8(a) shows its serial implementation. This architecture
causes a timing path to be much longer since a 5-input
conventional flow control algorithm is performed after
performing our 4-input SDRAM-aware flow control algorithm.
On the contrary, in Fig. 8(b), our 4-input SDRAM-aware flow
controller for memory packets and a 4-input conventional flow
control algorithm for normal packets are parallelly performed.
Finally, two resulting packets are scheduled by a 2-input
conventional flow controller. This parallel implementation
can minimize an increase of timing path whereas its design
cost is more expensive than the design cost of the serial
implementation. We adopt this parallel implementation in
our experiment. In addition, our flow controllers adopt
winner-take-all bandwidth allocation that allocates all of the
bandwidth to just one packet until it is finished or blocked
before serving the other packets [19].

An output scheduler either detects if an input buffer of the
next router is available or expects when the input buffer is
available. When an input buffer of the next router is full and a
deterministic routing logic is implemented, an output scheduler
lets the corresponding SDRAM-aware flow controller stop
scheduling packets. On the contrary, packets given multiple
routing paths performed by an adaptive routing logic can be
scheduled to other flow controllers less busy.

B. SDRAM-Aware Flow Control for Avoiding Bank Conflict
and Data Contention

Our flow control acts to allocate a channel to one of
competing flits of which destination is a memory subsystem
interfacing with SDRAM. Therefore, our flow-control mech-
anism performs arbitration to determine which flit gets the
channel it has requested. After the arbitration, a winning flit
advances over this channel. Our arbitration algorithm also
decides how to dispose of any flits that do not get their
requested channel.

In Algorithm 1 called scheduling packet to avoid bank
conflict and data contention (SP), our arbitration is a priority-
based algorithm, where a priority is determined by SDRAM
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Algorithm 1 Scheduling Packet to Avoid Bank Conflict and Data
Contention

Input: h(n), hi(n + 1 ) and Table II

1: for each hi(n+1), iεI do
2: if hi(n + 1 ) is a new packet entering to the router

then
3: wi = 0;
4: else
5: wi = wi + waiting cycles from previous

arbitration(n);
6: end if
7: di = delay cycle between h(n) and hi(n+1) from

Table II;
8: pi = wi - di;
9: end for

10: hi(n + 1 ) with maximum(pi) is allocated to a
channel;

Output: h(n + 1 )

awareness. The priority is assigned to all head flits of which
destination is a memory subsystem. Let h(n) be a head flit of
a packet, which already has been allocated a channel by the
SDRAM-aware flow control at the nth arbitration. Body and
tail flits are assigned the same channel as their head flit. Let
hi(n + 1) be one of all competing head flits (I) which should
be allocated to the same channel as h(n) by the SDRAM-
aware flow control at the (n + 1)th arbitration, where iε I. The
head flits, h(n) and hi(n+1) contain address and command
information to access SDRAM, denoted by (RAn, BAn,
R/Wn) and (RAn+1,i, BAn+1,i, R/Wn+1,i), respectively. At the
(n + 1)th arbitration, all hi(n + 1) are compared to h(n) and
then are given a delay penalty from Table II (line 7) that
is composed from DDR I, II, and III SDRAM working at
133–800 MHz clock frequency (with 266 MHz to 1.6 GHz
data rate) [8].

Table II shows how many clock cycles are wasted by bank
conflict and data contention or a combination thereof when
hi(n+1) accesses SDRAM after h(n). If bank conflict and data
contention happen simultaneously, bank conflict is commonly
prioritized since bank conflict wastes more clock cycles than
data contention. According to a R/W command, a BA and a
RA, there are 12 cases as shown in Table II. Twelve cases are
also classified into eight delay types that are described in the
next sections.

1) Delay a: Case 1 and case 10 have no clock cycle loss
since hi(n + 1) is the same R/W command, BA and RA as
h(n). These cases indicate that the same row data of the same
bank are again accessed by the same command. Thus, the bank
does not need to be deactivated and reactivated, which causes
the clock cycle loss. In addition, R/W latency of hi(n + 1)
can be hidden while h(n) is accessed. In Fig. 3(b), the relation
between read 2 and read 4 is case 1 and the relation between
write 1 and write 3 is case 10.

2) Delay b: Case 2 is the read-to-read bank conflict ex-
plained in Section III-B1. Before executing the latter read ac-
cessing the same bank but a different row, the bank must be de-
activated, i.e., data in the row buffer move to the corresponding

row of the bank. Then, the bank must be activated again, which
indicates that the row buffer should be again filled with new
data for the latter read. Thus, it takes tRP+tRCD+CL to receive
data of the latter read after receiving data of the former read.
This case is shown in the relation between read 1 and read 2
and in the relation between read 3 and read 4 in Fig. 2(a).

3) Delay c: Case 3 and case 12 have no clock cycle loss
since bank interleaving is completely performed as mentioned
in Section III-B1. Case 3 is the read-to-read bank interleaving,
as shown in Fig. 2(b), and case 12 is the write-to-write bank
interleaving. Since a BA of the latter request is different from
that of the former request, the bank accessed by the latter
request can be activated while data of the former request are
transferred to or from SDRAM. Then, when data of the former
request complete to transfer, data of the latter request can be
accessed with no loss of clock cycle.

4) Delay d: Case 4 and case 6 have at least one clock
cycle interval between the former read data and the latter
write data to avoid data contention in DDR I/II SDRAM as
shown in Section III-B2. In DDR III SDRAM, the latter write
command can be executed internal RTW command delay time
(tRTW ) after the former read command. Then, write data can
be transferred to SDRAM after WL. Thus, actual write data
are transferred to DDR III SDRAM, two clock cycles after
receiving the last read data. Thus, tRTW lets data contention
hidden naturally. In Fig. 3(a), the relation between read 2
and write 3 is case 4. Case 6 is data contention with bank
interleaving.

5) Delay e: In case 5, data contention and bank conflict
happen at the same time since it is a RTW access and BAs
of the read request and the write request are same but their
RAs are different. As mentioned before, bank conflict should
be considered preferentially since it wastes more clock cycles
than data contention. Before writing data to the different row in
the same bank, the row buffer should be idle after reading data
and then active. It takes tRP to be idle and tRCD to be active
again. Then, data can be written after WL. Data contention
hides naturally behind this bank conflict.

6) Delay f: Case 7 is the WTR data contention when
the latter read request accesses data placed in the same bank
and row as the former write. Case 9 is also the WTR data
contention with bank interleaving since the latter read has a
different BA. To read data after writing data placed in the
same bank and row or in a different bank, a read command
is accepted internal WTR command delay time (tWTR) after
writing the last data to SDRAM. Then read data are transferred
from the SDRAM after read latency.

7) Delay g: Case 8 causes the longest delay time due to the
WTR bank conflict. Data contention is ignored since the bank
conflict is more critical. The latter read request accesses data
placed in the same bank but a different row. Thus, after the
former write request, the bank should be idle. tWR is required
to accept a PRE command for deactivation after writing the
last data and it takes tRP to complete the PRE command.
Furthermore, tRCD is required to activate the row buffer for
the latter read request. Then, data can be received read latency
after accepting a read command. Thus, total delay time is
tWR+tRP+tRCD+CL.
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TABLE II

Data Delay Between h(n) and hi(n + 1)

Relation of h(n) with RWn, BAn, and RAn and hi(n+1) with DDR I SDRA M (MHz) DDR II SDRAM (MHz) DDR III SDRAM (MHz) Case
RWn+1,i, BAn+1,i, and RAn+1,i 133 167 200 200 267 333 400 400 533 667 800

RWn+1,i = R BAn = BAn+1,i RAn = RAn+1,i 0 0 0 0 0 0 0 0 0 0 0 1a

RAn�RAn+1,i 6 8.5 9 9 12 12 18 18 24 30 33 2b

RWn = R BAn�BAn+1,i 0 0 0 0 0 0 0 0 0 0 0 3c

RWn+1,i = W BAn = BAn+1,i RAn = RAn+1,i 1 1 1 1 1 1 1 2 2 2 2 4d

RAn�RAn+1,i 5 7 7 8 11 11 17 17 22 27 30 5e

BAn�BAn+1,i 1 1 1 1 1 1 1 2 2 2 2 6d

RWn+1,i = R BAn = BAn+1,i RAn = RAn+1,i 3 3.5 5 5 6 7 9 10 12 15 17 7f

RAn�RAn+1,i 8 11.5 12 12 16 20 24 24 32 40 45 8g

RWn = W BAn� BAn+1,i 3 3.5 5 5 6 7 9 10 12 15 17 9f

RWn+1,i = W BAn = BAn+1,i RAn = RAn+1,i 0 0 0 0 0 0 0 0 0 0 0 10a

RAn�RAn+1,i 7 10 10 11 15 15 23 23 30 37 42 11h

BAn�BAn+1,i 0 0 0 0 0 0 0 0 0 0 0 12c

a Accessing the same row data one more time.
btRP + tRCD + CL.
c Bank interleaving.
d One clock cycle interval between input and output in DDR I/II SDRAM. Two clock cycle intervals between input and output in DDR III SDRAM.
e tRP + tRCD + WL.
f tWTR + CL.
g tWR + tRP + tRCD + CL.
h tWR + tRP + tRCD + WL.

8) Delay h: Case 11 is the write-to-write bank conflict
since the latter write request accesses the same bank but a
different row from the former write request. As presented
in the previous case, delay g, it takes a bank tWR and tRP to
be idle after writing the last data. Then, its row buffer gets
active with row data for the latter write request. It takes tRCD

to be active and write data are finally transferred to SDRAM
after WL.

Our priority-based arbitration guarantees the upper bound
latency even if a high delay penalty of packet given from
Table II lasts for a long time. For example, let a packet with
case 11 lose a competition against a packet with case 10. If it
meets another packet with case 10 at the next competition,
the defeated packet keeps losing the competition since the
delay penalty is not changed. Thus, the defeated packet is
required to escape from this competition after several defeats.
To solve this starvation problem, our flow control counts the
number of clock cycle passed from the first competition to the
current competition (line 5) for each defeated packet. Then,
this waiting clock cycle is subtracted by the delay clock cycle
obtained in Table II (line 8). By this operation, any packet
delayed for the amount of the worst delay (case 8) does not
have a lower priority than a new packet entered in the router.
For example, in DDR III SDRAM working at 533 MHz and
800 MHz clock frequency, the packets waiting for 32 and 45
clock cycles get higher priority than any new packet entered
in the router, respectively.

Finally, the packet with the maximum pi is allocated to
a channel (line 10). In our SDRAM-aware flow control, the
packet with longer waiting cycle and shorter delay cycle gets
a higher priority. Then, the rest of packet that is blocked
waits for the next competition or get another competition at
a different SDRAM-aware flow controller if multiple routing
paths are allocated by a routing logic. Thus, if an adaptive
router instead of a deterministic router is employed in a routing
logic, the performance would be better.

C. SDRAM-Aware Flow Control for Avoiding Short Turn-
Around Bank Interleaving

As mentioned in Section III-B3, a short turn-around bank
interleaving problem is not critical for low-performance
SDRAM such as DDR I SDRAM since a bank has sufficient
time to be deactivated or reactivated until the bank is accessed
again. The reason is that short deactivation (tWR+tRP for
writing and tRP for reading) or reactivation time (tRCD) is
hidden behind the process of accessing a different bank. On
the contrary, deactivation, reactivation, and R/W latency time
are so long in high-performance SDRAM that it is difficult
for them to hide behind the process of accessing a different
bank. For example, in DDR III SDRAM working at 800 MHz
clock frequency, it takes a bank 23, 11, and 11 clock cycles
to deactivate, reactivate, and output data, respectively, after
writing data. Thus, before the written bank is again read with
a different RA, a scheduler should let different banks accessed
for at least 23 clock cycles to improve memory utilization.

The proposed SP algorithm just schedules memory request
packets to prevent bank conflict and data contention. Hence,
it should check whether a bank accessed by hi(n+1) is given
sufficient deactivation time before the bank is activated. It
is well explained together with hardware/architecture of an
SDRAM interface signal generator. Fig. 9 is an SDRAM
interface signal generator commonly used, where an input
packet passes three buffers to generate SDRAM commands
such as a PRE command, an ACT command, and an R/W
command. First, an input packet arriving at an SDRAM
interface signal generator is stored in a deactivation buffer
but not an ACT buffer as shown in Fig. 9. That means a bank
keeps activating after accessing data, called open page mode.
It can be useful for high memory utilization since most of the
cores access data placed in continuous memory addresses, i.e.,
the same bank and RAs but different CAs. Then, if the input
packet accesses the bank previously activated with a different
RA, a PRE command is output to an SDRAM interface
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Fig. 9. SDRAM interface signal generator.

signal controller to deactivate the bank and then the packet
moves to an ACT buffer. On the contrary, if the input packet
accesses the bank previously activated with the same RA or
if the input packet accesses the bank already deactivated,
the packet just passes a deactivation buffer with no PRE
command. If a packet stored in an ACT buffer accesses the
bank deactivated, the packet lets an ACT command generated
to an SDRAM interface signal controller and then moves to a
R/W buffer. Finally, a packet stored in a R/W buffer always lets
an R/W command generated to an SDRAM interface signal
controller. An SDRAM interface signal controller receives a
PRE command, an ACT command, and an R/W command
from those buffers and then generates the final interface signals
to SDRAM.

To solve the short turn-around bank interleaving problem
happening in this SDRAM interface signal generator, a packet
that is output from a deactivation buffer should pass (tWR)+tRP

until the packet is output from an ACT buffer. In addition, a
packet that is output from an ACT buffer should pass tRCD until
the packet is output from a R/W buffer. Since the deactivation
time is longer than the ACT time and R/W latency, the interval
between packets accessing the same bank and a different row
should be at least tRPor tWR + tRP depending on a read request
or a write request that the previous packet accessing each bank
is.

Algorithm 2, called assigning priority to avoid short turn-
around bank interleaving (AP), is executed instead of line
8 in our SP algorithm to solve the short turn-around bank
interleaving problem. In the AP algorithm, a clock cycle (dis)
required to deactivate each bank is recorded after a R/W
operation is completed. Thus, the same number of counter
as the number of bank is required to save and count dis. If
the packet h(n) performed is a write request, dis of bank that
h(n) accesses is set to tWR + tRP in line 4. If the packet h(n)
performed is a read request, dis of bank that h(n) accesses is
set to tRP in line 6. Then, all dis are reduced by 1 every clock
cycle in line 9. If any packet, hi(n + 1) is in cases 3, 6, 9,
and 12 of Table II with h(n), our AP algorithm checks if the
bank accessed by the hi(n + 1) has sufficient deactivation time
(lines 11–15). For this operation, did captures dis in line 12 if
the relation between h(n) and hi(n + 1) is cases 3, 6, 9, and
12. Otherwise, did is 0 in line 14. Then, did is compared to di

obtained from Table II. Finally, larger delay time is chosen as
effective delay time and then subtracts a waiting clock cycle

Algorithm 2 Assigning Priority to Avoid Short Turn-Around Bank
Interleaving

Input: wi, di, h(n) and hi(n + 1)
1: for every clock cycle do
2: if h(n) is done then
3: if h(n) is write request then
4: dis of bank(h(n))= tWR+ tRP ;
5: else
6: dis of bank(h(n))= tRP ;
7: end if
8: end if
9: dis= dis– 1 for all dis;
10: end for
11: if relation of h(n) and hi(n + 1) is cases 3, 6, 9, and

12 then
12: did = dis of bank(hi(n+1));
13: else
14: did = 0;
15: end if
16: pi = wi– max(di, did);
Output: pi

as shown in line 16. Our solution makes banks accessed as
uniformly as possible such that the banks get the sufficient
time to be deactivated for the next request.

D. Hardware Complexity

Memory scheduling is performed by our SDRAM-aware
flow controller included in multiple NoC routers instead of
a single memory subsystem. Thus, simple logics are added
for our SP and AP algorithm to compute SDRAM access
delays (di and did) and waiting time (wi) whereas a buffer and
a scheduler of memory subsystem are removed as shown in
Fig. 6. A buffer in a memory subsystem is used to store several
packets and then to reorder the packets for successive delivery
of SDRAM data. However, as the massive size of packet is
recently generated in graphics processing units (GPU) and a
high-definition video system, the size of buffer gets larger.
The proposed NoC design does not require any buffers in a
memory subsystem since memory scheduling is performed in
multiple NoC routers and the maximum four input buffers per
router in a regular mesh network substitute for a buffer in a
memory subsystem. In addition, the size of input buffer in
the router does not increase according to the size of packet
since the input buffer is managed by wormhole flow control.
Consequently, a distinguished hardware decrease by a buffer
in a memory subsystem exceeds a hardware increase by the
SDRAM-aware flow controller in multiple routers such that
total gate count is reduced.

VI. Experimental Results

Our SDRAM-aware NoC router is implemented with
Verilog hardware description language (HDL). We implement
a memory subsystem operating for DDR I SDRAM working
at 133 MHz and 200 MHz clock frequency, DDR II SDRAM
working at 266 MHz, 333 MHz, and 400 MHz clock frequency,
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Fig. 10. Comparison in DTV application according to the number of SDRAM-aware routers. (a) Memory utilization. (b) Average latency. (c) Gate count ratio.

and DDR III SDRAM working at 533 MHz and 800 MHz
clock frequency [8], all of which consist of four banks. The
memory subsystem is implemented with a design concept of
Sonics MemMax [21] and Denali Databahn [22]. MemMax
schedules memory requests to prevent bank conflict and data
contention similar to our SP algorithm. In addition, users can
choose a depth of buffers, modes of operation and quality-
of-service settings that best suit various applications. Since
MemMax supports an open core protocol where request sig-
nals and data signals are separated, MemMax requires both a
request buffer and a data buffer per thread. We use 4-thread
MemMax where each thread requires a 32-flit request buffer
and a 32-filt data buffer. Databahn is an SDRAM interface
signal generator which schedules RAS, CAS, PRE, and refresh
operation. Both are included in the conventional NoC design
with a round-robin flow control based router. This is compared
to our NoC design including multiple SDRAM-aware routers
and an SDRAM interface signal generator instead of a full
memory subsystem. Processing elements are mapped to mesh
grid by A3MAP [23] and each simulation runs for one million
clock cycles.

A. Digital Television Application

The conventional NoC design and our SDRAM-aware NoC
design are applied to a Samsung DTV system that consists of
nine subsystems, i.e., a central processing unit that consists
of ARM9 and several peripherals, a moving picture experts
group (MPEG) decoder, a digital natural image engine, GPU,
an audio decoder, a transport stream decoder, an audio/video
format converter, a channel decoder, and a memory subsystem
that interfaces with DDR II SDRAM working at 333 MHz
clock frequency. In the conventional NoC design, a router
using a round-robin flow control algorithm is gradually re-
placed with our SDRAM-aware router using the proposed SP
algorithm in the order where the router that is the closest to a
memory subsystem is replaced first and where the router that
is the farthest away from a memory subsystem is replaced
last. Fig. 10 shows the results depending on the number of
SDRAM-aware router placed in the order.

In Fig. 10(a) and (b), memory utilization and memory
latency achieved by the conventional NoC design are 67.2%
and 94 cycles, respectively. Memory utilization and memory
latency performed by our SDRAM-aware NoC design is
just 57% and 119 cycles, respectively, in case that there

are no input buffer and no memory scheduler in a memory
subsystem and no SDRAM-aware router. However, whenever
our SDRAM-aware router is substituted for the conventional
router in the DTV system, memory utilization and memory
latency improves rapidly. As a result, when three SDRAM-
aware routers are substituted for three conventional routers,
memory utilization increases up to 72% (i.e., 7.1% better
than the conventional NoC design). However, more than four
SDRAM-aware routers do not improve memory utilization any
more since the solvable bank conflict and data contention are
almost prevented by three SDRAM-aware routers. Similarly,
in Fig. 10(b), memory latency is also shortened by three
SDRAM-aware routers up to 79 cycles (i.e., 16% shorter than
the conventional NoC design) since high memory utilization
makes a packet performed as fast as possible and our SDRAM-
aware flow controller manages the upper bound latency.

Our SDRAM-aware NoC design and the conventional NoC
design are synthesized by Synopsys Design Vision with a
TSMC130LV library. The gate count of our SDRAM-aware
NoC design is 26.8% smaller when three round-robin routers
are replaced with our SDRAM-aware routers in Fig. 10(c). In
addition, its gate count is 24.8% smaller even if all round-
robin routers are replaced with our SDRAM-aware routers.
The reason is that a large buffer and a complex scheduler in a
memory system are removed whereas an additional hardware
increased by our SDRAM-aware flow controller is minimal.

We also implement the SDRAM-aware NoC based a DTV
system interfacing with a variety of DDR SDRAMs working
at 133–800 MHz clock frequency. Our DTV system works
for real-time computing when it interfaces with DDR II
SDRAM working at 333 MHz clock frequency. However, to
show the benefit of our SDRAM-aware NoC design in various
DDR SDRAMs, we let a packet injection rate of each IP
changed similar to a change of the SDRAM clock speed.
Table III shows memory utilization and latency in our NoC
design including three SDRAM-aware routers compared to the
conventional NoC design. Our SDRAM-aware NoC design
proves more merits on high-performance DDR SDRAM in
Table III. For example, our SDRAM-aware NoC improves
more 3.7% memory utilization and 14.3% memory latency
than the conventional NoC when they all interface with
DDR I SDRAM working at 133 MHz clock frequency. On
the contrary, our SDRAM-aware improves more 26% memory
utilization and 30.8% memory latency than the conventional
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TABLE III

Comparison in DTV Application According to Various DDR SDRAMs

Measure Router DDR I SDRAM DDR II SDRAM DDR III SDRAM
133 MHz 200 MHz 266 MHz 400 MHz 533 MHz 800 MHz

Conventional NoC 73.1% 72.2% 70% 61.4% 52.6% 43.5%
Memory utilization SP 75.8% 74.5% 74.8% 68% 62.3% 54.8%

Difference (improvement) 2.7% (3.7%) 2.3% (3.2%) 4.8% (6.9%) 6.6% (10.7%) 9.7% (18.4%) 11.3% (26%)
Conventional NoC 84 cycles 85 cycles 96 cycles 110 cycles 126 cycles 146 cycles

Memory latency SP 72 cycles 76 cycles 76 cycles 83 cycles 90 cycles 101 cycles
Improvement 14.3% 10.6% 20.8% 24.5% 28.6% 30.8%

TABLE IV

Comparison in Synthetic Benchmarks According to Network Size

Measure Router 3 × 3 NoC 4 × 4 NoC 5 × 5 NoC 6 × 6 NoC Average
Conventional NoC 59.4% 58.7% 52.9% 53.2% 56.1%

Memory utilization SP 63.7% 65.5% 60.3% 61.2% 62.7%
Difference (improvement) 4.3% (5.6%) 6.8% (11.6%) 7.1% (13.4%) 8.0% (15%) 6.6% (11.8%)

Conventional NoC 65 cycles 79 cycles 94 cycles 99 cycles 84 cycles
Memory latency SP 59 cycles 66 cycles 80 cycles 71 cycles 69 cycles

Improvement 9.2% 16.4% 14.9% 28.3% 18%

TABLE V

Comparison of SP and SP + AP

Measure Router
DDR I SDRAM DDR II SDRAM DDR III SDRAM

133 MHz 200 MHz 266 MHz 400 MHz 533 MHz 800 MHz
Conventional NoC 67% 69.3% 61.8% 51.9% 38.8% 30.9%

Memory utilization SP 68.2% 69.9% 64.3% 54.9% 47.8% 39.2%
SP+AP 69.1% 70.5% 66.1% 58.3% 51.4% 42.8%

Difference (improvement)∗ 0.9% (1.3%) 0.6% (0.9%) 1.8% (2.8%) 3.4% (6.2%) 3.6% (7.5%) 3.6% (9.2%)
Conventional NoC 85 cycles 87 cycles 96 cycles 115 cycles 151 cycles 186 cycles

Memory latency SP 83 cycles 84 cycles 92 cycles 106 cycles 126 cycles 152 cycles
SP+AP 83 cycles 84 cycles 90 cycles 100 cycles 114 cycles 138 cycles

Improvement∗ 0% 0% 2.2% 5.7% 9.5% 9.2%

∗It is the difference (improvement) between SP and SP+AP.

NoC when they all interface with DDR III SDRAM working
at 800 MHz clock frequency. Since timing constraints caused
by bank conflict is about six times longer in DDR III SDRAM
working at 800 MHz clock frequency than in DDR I SDRAM
working at 133 MHz clock frequency, our SDRAM-aware NoC
design achieves better improvement of memory utilization and
latency in DDR SDRAM operating at a fast clock frequency.

The SDRAM-aware NoC design implemented by our SP
algorithm is also applied into dual DTV model [24] con-
taining dual MPEG decoders and dual memory subsystems.
Consequently, the improvement of memory utilization and
latency is similar to a single memory subsystem. However,
it saves more than 42% gate count compared to dual DTV
model implemented by the conventional NoC design since our
SDRAM-aware NoC design does not need eight 32-flit request
and data buffers and two complex memory schedulers in a dual
memory subsystem.

B. Synthetic Benchmarks

We evaluate the improvement of memory utilization and
memory latency obtained from several randomly generated
applications on industrial intellectual properties (IP) with
DDR II SDRAM working at 333 MHz clock frequency. The
SDRAM-aware router adopts the SP algorithm and all of the
conventional routers are replaced with our SDRAM-aware
routers. The IPs are mapped into 3 × 3 to 6 × 6 mesh
network by A3MAP [23] and generate 4–32 flits per packet at
dynamic intervals. Table IV shows our SDRAM-aware NoC
improves 11.8% memory utilization and 18% memory latency

on average compared to the conventional NoC. In particular,
the improvement of memory utilization and memory latency
is higher in 6×6 NoC than in 3×3 NoC since packets passing
through more SDRAM-aware routers have more opportunities
to be scheduled well for SDRAM operations. Therefore, we
can expect that the improvement of memory utilization and
memory latency would be greater in larger or complex NoC.

C. Comparison of SP and SP + AP

We evaluate the improvement of memory utilization and
latency of SP+AP algorithm that considers the short turn-
around bank interleaving problem. For this experiment, we
use a 4 × 4 mesh network including three SDRAM-aware
routers and execute several randomly generated applications on
industrial IPs. Table V shows the SP+AP algorithm achieves
better memory utilization and memory latency than the SP
algorithm, in particular, in high-performance DDR SDRAM.
As shown in Table V, the short turn-around bank interleaving
problem is not critical in low-performance DDR SDRAM
since the improvement of memory utilization and latency
achieved by the SP+AP algorithm is just around 1% compared
to the SP algorithm. On the contrary, it causes memory
performance critically degraded when high-performance DDR
SDRAM is adopted in a NoC design. For example, in DDR
III SDRAM working at 800 MHz clock frequency, the SP+AP
algorithm achieves 9.2% higher memory utilization and 9.2%
shorter memory latency than the SP algorithm. The proposed
SP+AP algorithm requires an additional hardware such as
four counters, one comparator, and some control logics to
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check each bank state. However, the additional circuitry
is tiny.

VII. Conclusion

This paper presented an SDRAM-aware NoC design where
multiple NoC routers adopting our SDRAM-aware flow con-
trol algorithm allocate an SDRAM access packet to a channel
for the efficient SDRAM operation. Our SDRAM-aware flow
control algorithms solved three memory scheduling problems,
such as bank conflict, data contention, and short turn-around
bank interleaving to improve memory utilization and latency.
The proposed SP algorithm solved the bank conflict problem
and the data contention problem and the proposed SP+AP
algorithm solved the short turn-around bank interleaving prob-
lem. Experimental results showed that our SDRAM-aware
flow controller adopting the SP algorithm delivered superior
memory utilization and latency with the small design cost
compared to the conventional NoC design. In addition, our
SP+AP algorithm achieved higher memory performance than
the SP algorithm, in particular, in high-performance DDR
SDRAM. Our SDRAM-aware router can achieve better per-
formance improvement when it is employed in complex NoC
or its routing scheme is adaptive. In conclusion, the proposed
SDRAM-aware router provides more opportunities to support
bandwidth-hungry NoC designs with the small hardware cost.
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