
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

BoxRouter: A New Global Router Based on
Box Expansion and Progressive ILP

Minsik Cho and David Z. Pan

Abstract— In this paper, we propose a new global router,
BoxRouter, powered by the concept of box expansion, progressive
integer linear programming (ILP), and adaptive maze routing.
BoxRouter first uses a simple PreRouting strategy to predict and
capture the most congested region with high fidelity, compared
to the final routing. Based on progressive box expansion initiated
from the most congested region, BoxRouting is performed with
progressive ILP and adaptive maze routing. Our progressive
ILP is shown to be much more efficient than traditional ILP
in terms of speed and quality, and the adaptive maze routing
based on multi-source multi-target with bridge model is effective
in minimizing the congestion and wirelength. It is followed
by an effective PostRouting step which reroutes without rip-
up to enhance the routing solution further and obtain smooth
trade-off between wirelength and routability. Our experimental
results show that BoxRouter significantly outperforms the state-
of-the-art published global routers, e.g., 91% better routability
than [1] (with 14% less wirelength and 3.3x speedup), 79% better
routability than [2] (with similar wirelength and 2x speedup),
4.2% less wirelength and 16x speedup than [3] (with simi-
lar routability). Additional enhancement in box expansion and
PostRouting further improves the result with similar wirelength,
but much better routability than the latest work in global
routing [4], [5].

Index Terms— Global routing, physical design, congestion,
routability, integer linear programming (ILP), rectilinear min-
imum Steiner tree

I. I NTRODUCTION

Routing is a key stage for VLSI physical design. Aggressive
technology scaling has led to much smaller/faster devices,but
more resistive interconnects and larger coupling capacitance.
Since routing directly determines interconnects (wirelength,
routability/congestion, and so on) and the overall VLSI system
performance [6]–[8], it plays a critical role in the deep
submicrondesign closure. For nanometer interconnects, the
manufacturability and variability issues such as antenna effect,
copper chemical-mechanical polishing (CMP), subwavelength
printability, and yield loss due to random defects are becoming
growing concern and shown to be directly impacted by wire
embedding [8]–[15]. Thus, routing plays a major role in terms
of the manufacturing closureas well.
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In general, routing consists of two steps, global routing and
detailed routing. While detailed routing finalizes the exact
DRC-compatible pin-to-pin connections, the global routing,
as its name implies, is the routing stage that plans the
approximate routing path of each net to reduce the complexity
of routing task and guide the detailed router [16]. Thus, it has
significant impact on the overall wirelength, routability,and
timing [16], [17]. Furthermore, it is also the key stage for
optimizing the wire density distribution to improve the overall
manufacturability (e.g., less post-CMP topography variation,
less copper erosion/dishing, and less optical interference for
better printability [10]–[13]) and yield (e.g., smaller critical
area [14], [15]).

The importance of global routing in VLSI design flow
has led to many works in predicting and estimating routing
congestion, and designing global routers. Probability based
congestion prediction for global routing is studied in [18]–[21],
and global router based congestion estimation is researched
in [22], [23] for early wirelength estimation. Within the
scope of over-the-cell global routing model [2], Burstein et
al. [24] proposed a hierarchical approach to speed up integer
programming formulation for global routing, and Kastner [25]
proposed a pattern-based global routing. Raja et al. [2] pre-
sentedChi dispersion router based on linear cost function as
well as predicted congestion map, and showed better results
than [25]. The multicommodity flow-based global router by
Albrecht [3] showed good results and was used in industry, but
at the expense of computational effort. Fast global router [4],
[26], [27] can feed more accurate interconnect information
(such as wirelength and congestion) back to placement or other
early physical synthesis engines for better design convergence
and tighter integration.

In this paper, a new routability-driven global router, namely
BoxRouter is proposed. BoxRouter first performs a very fast
yet effective PreRouting to identify the most congested regions
or boxes. Then, it progressively expands the routing box, and
performs routing within each expanded box (BoxRouting),
until the entire circuit is covered, i.e., all the wires are routed.
Efficient progressive ILP is formulated with adaptive maze
routing, and effective PostRouting follows BoxRouting for
further enhancement. The major contributions of this paper
include the following.

• We propose a new ILP formulation which is significantly
faster and more scalable than the traditional formulation
in [3], [28], which makes it practical to apply ILP to solve
VLSI routing.

• We observe that a simple PreRouting step can capture the
overall congestion, and improve runtime.

• We propose the key BoxRouting idea which efficiently
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utilizes limited routing capacities based on box expansion
initiated from the most congested region estimated by
PreRouting. BoxRouting is efficient in terms of routabil-
ity as the wires in the more congested region are routed
before those in the less congested region.

• We propose an efficient progressive integer linear pro-
gramming (ILP) for BoxRouting. In our progressive ILP,
only wires between two successive boxes are routed with
L-shape patterns. Thus even with ILP, our runtime is still
much faster than existing global routers [2], [3], [25].

• We propose an adaptive maze routing based on multi-
source multi-target with bridge model. Our adaptive maze
routing uses different routing strategies inside and outside
the box such that routability can be maximized with
minimum wirelength increase.

• We propose an effective PostRouting step whichreroutes
wires from the most congested regionwithout rip-up. It
is more efficient than the conventional rip-up & route. It
also provides smooth trade-off between wirelength and
routability with only a simple parameter.

BoxRouter achieves much better results on the standard
ISPD98 IBM benchmarks than [1]–[5], thus pushes the
state-of-the-art considerably. Due to the fundamental impor-
tance of global routing in routability, timing, and manu-
facturability [29], we believe it shall have many applica-
tions/implications for nanometer designs. Preliminary work of
BoxRouter is presented in [30].

The rest of the paper is organized as follows. In Section II,
preliminaries are described. Previous works are surveyed in
Section III. Comparison and evaluation of ILP formulations
are presented in Section IV. In Section V, BoxRouter is
proposed. Experimental results are discussed in Section VI.
Section VII concludes this paper with future work.

II. PRELIMINARIES

A. Notations

Table I lists the notations used throughout this paper.

TABLE I

THE NOTATIONS IN THIS PAPER

vi vertex / global routing celli
eij edge betweenvi andvj

mij maximum routing capacity ofeij

cij available routing capacity ofeij

B. Global Routing Model

The global routing problem can be modeled as a grid graph
G(V,E), where each vertexvi represents a rectangular region
of the chip, so called a global routing cell (G-cell), and an edge
eij represents the boundary betweenvi and vj with a given
maximum routing capacitymij . All the pins are assumed to
be at the center of the corresponding G-cell. Fig. 1 shows how
the chip can be abstracted into a grid graph wheremAB = 3.
A global routing is to find paths that connect the pins inside
the G-cells throughG(V,E) for every net.

C. Global Routing Metrics

The key task of global router is to maximize the routability
for successful detailed routing [27]. In addition, wirelength,
runtime, and timing are other important metrics for global
router.

• Routability is usually the most important metric for
global routing. It can be estimated by the number of
overflows which indicates that routing demand exceeds
the available routing capacity [25], [27]. In Fig. 1, the
number of overflow betweenvA andvB is one, as there
are four routed nets, butmAB = 3. Formal definition of
overflow can be found in [25].

• Wirelength is an important metric for placement as
well as routing. But, it is less important compared to
routability, as most wires are routed with shortest dis-
tances, thus the total wirelength is in general not too
far away from optimum for a reasonable global routing
solution [27]. However, there can be huge difference in
terms of routability between two different global routing
solutions of similar wirelength.

• Runtime is also an important consideration, as global
routing links placement and detailed routing. A fast
global router can feed proper interconnection information
to higher level design flow for better design conver-
gence [26].

• Other objectives such as timing and manufacturability
are significant objectives as well. Since the focus of
this paper is on the core global routing techniques, they
are not explicitly considered in this work. However, our
framework can be extended to handle them in the future.

III. PREVIOUS WORKS

A. Congestion Prediction and Estimation

Fast and accurate congestion prediction and estimation are
essential techniques for reducing congestion in multiple stages
of physical synthesis. For example, during placement, the cells
can be inflated or the white space can be allocated in the
congested region to reduce the congestion and enhance the
routability [31], [32].

Recent study in congestion prediction includes a number
of probabilistic approaches. Lou et al. [18] decompose a net
into multiple two pin wires, then compute the probabilistic
congestion for each G-cell based on the chance of having the
two pin wire routed in the G-cell. While all possible detour-
free paths are assumed with the same probability in [18],
Westra et al. [20] only consider the simple L/Z shape routing

A B

G-cell

(a) real circuit with G-cells

A B
3

(b) grid graph for routing

Fig. 1. A real circuit with netlists can be dissected into multiple grids which
can be mapped into graph for global routing with routing capacity on an edge.
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based on the observation that one or two-bend nets are
dominant in the real designs. By empirically extracting the
occurrence of L and Z shape routings from multiple real
industrial designs, different probability weights are assigned
to L and Z shapes routings. In [23], it is shown that fast
global routing based congestion estimation can be more accu-
rate than probabilistic congestion prediction, as probabilistic
approach highly depends on tools or designs. However, global
routing based congestion estimation is not exact neither. A
recent paper [26] claims that congestion estimation can be
different from global routing result, unless the same techniques
and optimization parameters are applied in both congestion
estimation and global routing.

B. Global Router

Typical global router decomposes every net into a set of
two pin wires by building minimum spanning tree or Steiner
tree, then routes them by maze routing algorithm, followed by
rip-up and reroute technique for further improvement. In [1],
[25], Kastner et al. propose a simple pattern based routing
rather than maze routing for fast runtime without incurring
significant routing quality degradation. Hadsell et al. [2]take
advantage of predicted congestion map to guide global router,
and show considerable routing quality improvement over [1].
Congestion-aware Steiner tree in [4], [5], [26] reduces the
runtime by increasing the number of nets routed by simple
and fast pattern routing, and thus less relying on expensive
maze routing.

While the previous global routers [2], [25], [26] are mainly
based on pattern routing, maze routing, or shortest path
algorithm, Albrecht [3] formulates the global routing as multi-
commodity problem which can be solved by an approxima-
tion algorithm for fractional flow with randomized rounding.
First, it repeats building a Rectilinear Minimum Steiner Tree
(RMST) using maze routing in net-by-net manner. After all
nets are routed in RMST, a set of G-cells above the given
congestion threshold are selected, and all the nets on any of
those G-cells are routed again by building new RMST. Two
key advantages of such approach are that congestion can be
evenly distributed over the chip and a small set of nets which
are penalized by extreme detour will be discouraged. Overall,
this algorithm shows good congestion reduction, but at a cost
of high computational overhead.

IV. PRACTICAL INTEGERL INEAR PROGRAMMING

FOR GLOBAL ROUTING

Integer linear programming (ILP) technique has been be-
lieved unacceptably slow for global routing in VLSI design,
despite that it finds the global optimum for a given instance of
problem. In this section, we propose a new ILP formulation
for global routing, which is inherently different from the one
in [3], [28], and discuss pros/cons of each formulation. In this
work, to avoid any confusion, we call the traditional ILP as
T-ILP and our new ILP as N-ILP. Both T-ILP and N-ILP are
routability-driven, but they adopt different formulations, which
make big difference in performance and scalability.
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Fig. 2. Example of ILP for global routing with two possible routing solutions
is shown. Two routing solutions in (c) and (d) are valid w.r.tthe given routing
capacities, but different in terms of congestion distribution. The one in (c)
achieves more uniform congestion distribution. T-ILP prefers routing (c) to
routing (d), while N-ILP has no preference.

min : C

s.t : xa11, xa12, xa21, xa31, xb11, xb12 ∈ {0, 1}

xa11 + xa12 = 1

xb11 + xb12 = 1

xa21 = 1, xa31 = 1

xa11 + xb12 ≤ C

xa21 + xb11 ≤ C

xa11 ≤ C, xa12 ≤ C, xa31 ≤ C

xb11 ≤ C, xb12 ≤ C

Fig. 3. T-ILP formulation for the example of Fig. 2 (b)

Before the main discussion, we describe Fig. 2 for clear
explanation in the following sections. Fig. 2 (a) shows two
unrouted netsa andb which are further decomposed into wires
(See Section V-A): neta has three wires (wa1, wa2 andwa3),
and netb has one wire (wb1). For each wire, we can enumerate
all the possible routing paths, but for simplicity we show only
the paths in the minimum length and with minimum vias as
in Fig. 2 (b). Each possible routing path is called arouting
candidateof the given wire. In this example, we assume that
the routing capacity is 2 for the all the edges (r12 = 2, r25 =
2, and so forth), thus both Fig. 2 (c) and (d) are routable
solutions.

A. T-ILP

T-ILP minimizes the maximum congestion over all the
edges. Fig. 3 is a T-ILP formulation of Fig. 2 (b) where a
variableC is set to be larger than any congestion on any edge
(i.e., the upper bound). The routing result after solving Fig. 3
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min : C

s.t : xijk ∈ {0, 1} ∀(i, j, k) ∈ N
∑

k:(i,j,k)∈N xijk = 1 ∀i, j
∑

(i,j,k)∈L(e) xijk ≤ C ∀e

Fig. 4. General T-ILP formulation

is not Fig. 2 (d) but Fig. 2 (c), as Fig. 2 (d) has the maximum
congestion 1.0 one45 while Fig. 2 (c) has the maximum
congestion 0.5.

Let E be the set of edges in the grid (indexed bye), and let
N be the set of all feasible routing candidates. Furthermore,
let L(e) be the set of routing candidates crossing edgee.
Supposexijk is a binary variable set to 1 if thek-th routing
candidate of wirej of net i is chosen. Then, Fig. 4 shows a
general formulation of T-ILP. Note that the number of routing
candidates must be kept small (L-shape or L/Z-shape path)
due to practical limitations (e.g. memory). The advantagesof
T-ILP formulation include:

• As it minimizes the maximum congestion (min-max
formulation), it essentially tries to achieve more uniform
congestion distribution.

• The solution of T-ILP formulation always includes one
routing candidate for each unrouted wire. Thus, it com-
pletes routing by itself, and does not need any additional
step, unless there is any over-congested edge.

Meanwhile, the drawbacks of T-ILP formulation include:
• WhenC in Fig. 4 is larger than anyme (the maximum

routing capacity of the edgee), the number of over-
congested edges will explode. It considers not the overall
congestion but the maximum congestion. Therefore, as
long as the congestion is smaller thanC, it is possible to
have many over-congested edges.

• All the over-congested edges should be taken care of to
meet congestion constraint (otherwise, it is unroutable
by detailed router) by post-processing steps such as rip-
up&reroute.

• The T-ILP cannot be efficiently solved with branch-
and-bound or branch-and-cut algorithms. This will be
explained in Section IV-C.

max : 2xa11 + 2xa12 + xa21 + xa31 + 2xb11 + 2xb12

s.t : xa11, xa12, xa21, xa31, xb11, xb12 ∈ {0, 1}

xa11 + xa12 ≤ 1

xb11 + xb12 ≤ 1

xa21 ≤ 1, xa31 ≤ 1

xa11 + xb12 ≤ 2

xa21 + xb11 ≤ 2

xa11 ≤ 2, xa12 ≤ 2, xa31 ≤ 2

xb11 ≤ 2, xb12 ≤ 2

Fig. 5. N-ILP formulation for the example of Fig. 2 (b)

max :
∑

(i,j,k)∈N aijk · xijk

s.t : xijk ∈ {0, 1} ∀(i, j, k) ∈ N
∑

k:(i,j,k)∈N xijk ≤ 1 ∀i, j
∑

(i,j,k)∈L(e) xijk ≤ ce ∀e

Fig. 6. General N-ILP formulation

B. N-ILP

Our proposed N-ILP maximizes the weighted summation
of the number of routed wires under the routing capacity con-
straint. Fig. 5 is a N-ILP formulation of Fig. 2 (b) where each
routing candidate is weighted by its length in the objective.
The result from Fig. 5 can be either Fig. 2 (c) or Fig. 2 (d), as
N-ILP does not care about the maximum congestion, as long
as there is no overflow. Fig. 6 shows the general formulation of
N-ILP whereaijk is the weight of the routing candidatexijk

and the other notations are the same as in Fig. 4. Again, the
number of routing candidates should be kept small (L-shape
or L/Z-shape path). The advantages of N-ILP formulation
include:

• As each candidatexijk can have a different weight, other
design objectives like timing can easily be incorporated.

• Due to the hard constraint on routing capacity, the solu-
tion from N-ILP does not cause any over-congestion on
any edge.

• The N-ILP can be efficiently solved with branch-and-
bound or branch-and-cut algorithms. This will be ex-
plained in Section IV-C.

However, the drawbacks of N-ILP formulation include:

• The N-ILP may produce a biased routing solution in
terms of congestion uniformness. For example, if there
are two valid solutions with different congestion distribu-
tions, it may choose any of both depending on the solver
regardless of congestion uniformness (See Fig. 2).

• Different from T-ILP, it may not complete the routing. If
the over-congested edge appears, it will give up routing
some wires with smaller weight not to violate the hard
routing capacity constraint. Thus, N-ILP requires an
additional step for complete routing.

C. T-ILP vs. N-ILP

Based on the discussion in Section IV-A and IV-B, we
compare both ILP formulations in two aspects: routability and
runtime.

1) Routability: As mentioned earlier, both T-ILP and N-
ILP maximize the routability, but in different manners: T-ILP
minimizes the maximum congestion, but N-ILP maximizes the
number of routed wires under the routing capacity constraint.
This difference becomes highly distinct, depending on whether
the design is under-congested or over-congested.

• For under-congested designs, it is easy for T-ILP and
N-ILP to satisfy the routing constraint. Therefore, T-ILP
may be superior to N-ILP, as it can make more uniform
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congestion distribution which improves manufacturability
and crosstalk noise.

• For over-congested designs, T-ILP may unnecessarily
cause a lot of overflows, as it only cares about the
maximum congestion. However, N-ILP itself does not
cause any over-congested edges by leaving some wires
unrouted. The overflows from T-ILP and the unrouted
wires from N-ILP need to be picked up by the following
maze routing.

Since, modern VLSI designs are highly congested in gen-
eral, the advantage of T-ILP is quite trivial.

2) Runtime:For a given ILP solver, different ILP formula-
tions may have different runtime complexity. An ILP problem
is first solved as linear programming (LP), then branch based
algorithm is applied to any fractional variable to find the
integral optimal solution. We find that for the most widely
used ILP solving algorithms, branch-and-bound or branch-and-
cut [33], [34], the N-ILP formulation can be solved much more
efficiently than the T-ILP formulation for the same routing
problem.

For demonstration purpose, we prepare various routing
problems in different problem sizes (in terms of the number
of variables), then formulate them into both T-ILP and N-ILP.
Fig. 7 shows the normalized runtime of each T-ILP and N-
ILP formulation under typical computing environment (See
Section VI) with GNU Linear Programming Kit (GLPK) 4.8
with all speedup options turned on. Note that we obtain very
similar trend for various algorithms such as branch-and-bound
and branch-and-cut with different cutting planes [34], [35]. It
is clear that N-ILP is significantly faster than T-ILP, and such
speedup becomes more significant for larger problem size, e.g.,
over 1100 times for some large cases. There are two theoretical
explanations why N-ILP can be solved much faster than T-ILP.

• Since N-ILP is similar to a binary knapsack formulation,
the solution after LP is a near feasible solution with
almost all variables non-fractional [33], [36]. However,
due to themin-max nature of the objective function,
the variables in T-ILP have more incentive to remain
fractional after LP as opposed to their counterparts in N-
ILP. Consequently, the LP solution of T-ILP is much more
fractional than that of N-ILP, resulting in more branches
during branch-and-bound or branch-and-cut.

• The branch-and-bound or branch-and-cut techniques ter-
minate in shorter time, if more nodes can be fath-
omed [33]. Unfortunately, the min-max nature of the
objective function in T-ILP results in many near optimal
solutions. Therefore, the corresponding nodes cannot be
fathomed efficiently and the branch tree grows needlessly.

3) Summary:As discussed in Section IV-C.1 and IV-C.2,
N-ILP is significantly faster than T-ILP, and the solution
quality from N-ILP is similar to that from N-ILP for the over-
congested design. Thus, N-ILP is expected to work better for
the modern VLSI designs. Our proposed N-ILP is adopted
in BoxRouter in Section V, in progressive manner with box
expansion concept.
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Fig. 7. Runtimes of T-ILP and N-ILP are compared. It shows that N-ILP is
much faster and more scalable for larger problems than T-ILP.

V. BOXROUTER

In this section, we present our new global router,
BoxRouter, which is based on congestion-initiated box expan-
sion. BoxRouter progressively expands a box which initially
covers the most congested region only, but finally covers the
whole circuit. After every expansion, a circuit is divided into
two sections, inside the box and outside the box. BoxRouter
uses different routing strategies for each section to maximize
routability and minimize wirelength. Consider Fig. 8 (a),
where two wires (a andb) are inside the box, while the other
wires (c and d) are not inside the box. The routing capacity
inside the box is more precious toa and b than c and d for
two reasons:

• If a andb are not routed within the box, wirelength will
increase due to detour.

• c andd may have another viable routing path outside box
which does not waste the routing capacity inside the box.

Therefore, BoxRouter first routes as many wires inside the box
as possible with N-ILP in Section IV-B, maximally utilizing
the routing capacity inside the box. Then, for the wires which
cannot be routed by N-ILP within the box (due to insufficient
routing capacities), BoxRouter detours them by adaptive maze
routing with the following two strategies:

• Inside the box, use the routing capacities as much as
possible (greedily), as the wires inside the box have
priority over those outside the box.

• Outside the box, use the routing capacities conserva-
tively, as the wires outside the box may need them later
for their viable routing paths.

d
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c

a

a

b

b

(a) motivation for BoxRouting

Keep dense with 
greedy strategy

Keep uniform with 
conservative strategy

Box

(b) strategies of BoxRouting

Fig. 8. The basic concept of BoxRouter
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Fig. 9. BoxRouter consists of three main steps: PreRouting, BoxRouting,
and PostRouting. BoxRouting can be further composed of progressive ILP
and adaptive maze routing.

Those two strategies keep the wire density of the circuit as
in Fig. 8 (b), and make the wires detour the more congested
region to maximize the routability with minimum wirelength
overhead.

The overall flow of BoxRouter is in Fig. 9, which will
be explained in detail in the rest of this section. Section V-
A describes the preprocessing for BoxRouter. Section V-B
illustrates PreRouting for congestion estimation and routing
speedup. Section V-C explains BoxRouting, the main idea of
BoxRouter which includes progressive ILP (PILP), adaptive
maze routing (AMR), and box expansion. Finally, Section V-
D shows how PostRouting improves wirelength and routability
further while controlling the trade-off between them.

A. Steiner Tree and Net Decomposition

A net can be decomposed into two pinwireswith Rectilinear
Minimum Steiner Tree as shown in Fig. 10. In BoxRouter,
Flute [37] and GeoSteiner [38], [39] are tested for Steiner
tree construction, but Flute is finally adopted due to its
small computational overhead. Note that different Steinertree
algorithms such as timing-driven or congestion-driven Steiner
tree algorithms can be used in BoxRouter as well. A special
wire which does not need a bend is called aflat wire [18]. For
example, wirea-e, e-d, e-f andb-f in Fig. 10 (b) are flat wires,
while wire f-c requires at least one bend to be routed. Each
wire from a net becomes a single routing object. However,
the net is finally routed, only if all the wires from a net are

net a-b-c-d

a

d

b
c

(a) hypergraph for a net

d

wire a-e wire e-d

wire b-f wire f-c

wire e-f

f

e

a

c

b

(b) wires after decomposition

Fig. 10. Net can be decomposed into two pin wires with Rectilinear Minimum
Steiner Tree Construction.

Algorithm 1 PreRouting
Input: A list of wires W

1: Sort eachw in W by length in ascending order
2: for eachw in W do
3: if w is flat then
4: Make w routed
5: OF = the number of updated overflows
6: if OF > 0 then
7: Make w unrouted
8: end if
9: end if

10: end for

(a) congestion after PreRouting (b) congestion after BoxRouting

Fig. 11. Congestion estimations after PreRouting and BoxRouting are
compared. It shows that simple PreRouting can effectively capture overall
congestion as well as the most congested region.

routed. Routing each wire from a single net separately may
have downside of loosing information on other wires, resulting
in suboptimal routing. This issue is addressed in adaptive maze
routing in Section V-C.2.

B. PreRouting and Initial Box

PreRouting simply routes as many flat wires as possible
via the shortest pathwithout creating any overflow as in
Algorithm 1. As bulk of nets are destined to be routed in
simple patterns (L-shape or Z-shape) [20], [23], [25], Pre-
Routing can improve the runtime without degrading the final
solution. More importantly, if enough number of wires can be
routed by PreRouting, the global congestion can be captured
with reasonable accuracy. According to our experiments for
the tested benchmarks, about 60% of the final wirelength on
average can be routed with tiny computational overhead by
PreRouting. Fig. 11, shows two congestion maps, one after
PreRouting and the other one after BoxRouting where more
congested area is brighter. It shows that congestion hotspots in
Fig. 11 (b) can be predicted from Fig. 11 (a) by PreRouting. A
box which encompasses the four G-cells in the most congested
area will be created as shown in Fig. 12 (a) as a starting point
of BoxRouting. Note that if there are two most congested
areas, then the one closer to the center of the circuit is selected.

C. BoxRouting

In this subsection, BoxRouting will be explained with
Fig. 12. BoxRouting consists of three steps, progressive integer
linear programming routing, adaptive maze routing, and box
expansion as in Fig. 9. Those three steps are repeated until the
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(a) Initial box is created on the hotspot which
is estimated by PreRouting.
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is routed by adaptive maze routing.
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(f) BoxRouting is performed with Boxi+1.

Fig. 12. BoxRouting example

max :xb1 + xb2 + xf1 + xf2 + xh1 + xh2

s.t :xb1, xb2, xf1, xf2, xh1, xh2 ∈ {0, 1}

xb1 + xb2 ≤ 1

xf1 + xf2 ≤ 1

xf2 = 0

xh1 + xh2 ≤ 1

xb1 + xf1 + xh1 ≤ cAB

xb1 + xh1 ≤ cBD

xb2 + xh2 ≤ cAC

xb2 + xh2 ≤ cCD

Fig. 13. Progressive ILP formulation of Fig. 12 (c)

expanded box covers the whole circuit. Each of those steps are
explained in the following subsections.

1) Progressive ILP Routing (PILP): We show in Sec-
tion IV that N-ILP is more efficient than T-ILP for modern,
typically over-congested VLSI design. Therefore, we use N-
ILP formulation in PILP and further extend it by combining
it with the box expansion concept.

Assuming a box is expanded from the most congested
region as in Fig. 12 (a), consider Fig. 12 (b), where wires
within the box afteri-th expansion (boxi) are shown with
squares (b, f and h), and the other wires are shown with
circles. The already routed wires by either PreRouting or
previous BoxRouting are simply shown as solid lines. Note
that some flat wires likef, i andk could be remained unrouted

max :
∑

{xi1 + xi2} ∀i ∈ Wbox

s.t :xi1, xi2 ∈ {0, 1} ∀i ∈ Wbox

xi1 + xi2 ≤ 1 ∀i ∈ Wbox

xi2 = 0 ∀i ∈ Wbox ∩ Wflat∑

e∈xi,j

xij ≤ ce ∀e ∈ Wbox

Fig. 14. General progressive ILP formulation

until BoxRouting, if PreRouting gives up routing them due
to any overflow, or new Steiner points introduced by adaptive
maze routing (AMR) (explained later in this section) convert a
non-flat wire into a flat wire. For efficient routing as mentioned
in the beginning of this section, only wires within the box will
be routed by PILP and AMR.

In Fig. 12 (c), the wires within the box are shown with
G-cells (vA, vB , vC and vD), and the corresponding PILP
formulation for maximum routability is shown in Fig. 13. To
minimize the number of vias, two L-shape routing candidates
(xb1, xb2 and xh1, xh2) are considered for each wire in our
PILP formulation, but only one routing candidate (xf1 and
xf2=0) is considered for flat wires. General PILP formulation
is shown in Fig. 14, wherece is the available routing capacity
on edgee (See Table I),Wbox is a set of unrouted wires within
the current box, andWflat is a set of flat wires.

Different from the hierarchical ILP [24], our PILPprogres-
sively routes a part of the circuit, which is covered by each
expanding box. This box expansion limits the problem size
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Algorithm 2 BoxRouting
Input: A list of wires W in box B

1: Solve progressive ILP withW
2: for eachw in W do
3: if w is unroutedthen
4: Perform adaptive maze routing forw

5: end if
6: end for

such that PILP which is NP-hard can be solved efficiently.
Three advantages of our PILP can be summarized as follows:

• Basic formulation is the same as N-ILP of Section IV-B,
inheriting its advantages in runtime and scalability.

• Even though the last box can cover the whole circuit,
the PILP size remains tractable, as N-ILP is performed
on the wires between two successive boxes like between
Box i and Boxi+1 in Fig. 12 (e).

• As shown in Fig. 12 (e), the newer box always contains
the older box. Consequently, the solution from the older
PILP is reflected in the newer PILP formulation, provid-
ing smooth transition between two successive problems
for high quality solution.

Due to the limited routing capacity of each edge, some wires
may not be routed with the above PILP.xi1 + xi2 ≤ 1 in
Fig. 14 relaxes the routing constraint such that some wires may
not be routed if the overflow occurs. For example, assuming
mBD = mCD = 2 andxh1 = 1, the wireb cannot be routed
with ILP (xb1 = xb2 = 0), as two prerouted wires oneCD,
and one prerouted wire with the wireh (xh1 = 1) on eBD

consume all the routing capacities. For this case, the wireb is
routed by AMR as in Fig. 12 (d) with the routing cost from
Algorithm 3.

2) Adaptive Maze Routing (AMR): Algorithm 3 returns a
unit cost as long aseXY is inside box and still has available
routing capacity (line 2, 3). Otherwise, it returns a cost
inversely proportional to the available routing capacities (line
1). This cost function makes maze routing adaptively find the
best routing path such that the shortest path inside the box
for wirelength minimization, but the most idle path outside
the box for routability maximization. Note that the resource
outside the box should be used conservatively, as the wires
outside the current box may need them later. If too big detour

S T b

a
c

x y

path1

path2

path3

(a) by finding shorter pathx-y

TS

bc
x y

a

path1

path2 path3

(b) by sharing routed pathx-y

Fig. 15. Efficient multi-source multi-target maze routing examples are
illustrated. More efficient alternative paths are found by considering multiple
sources and targets.

Algorithm 3 Adaptive Maze Routing Cost for BoxRouting
Input: G-cell Vx, Vy, Box B

1: CostC = mxy − cxy

2: if exy is insideB andcxy > 0 then
3: C = 1
4: end if

Output: C

is required to avoid small overflows, AMR may return a path
with overflows for the least overall cost.

For the maze router implementation, we propose a multi-
source multi-target with bridge (MMB) maze routing model
for higher efficiency as illustrated in Fig. 15. Consider the
example in Fig. 15 (a) where the source G-cellS and the target
G-cell T are to be routed and the congestion is represented as
shaded region. To avoid congestion, a simple maze routing can
easily find the routing pathpath2 instead ofpath1. However,
as the goal is to makeS and T electrically connected, we
can achieve electrical connection as well as shorter wirelength
by alternatively routingx and y shown aspath3. The other
example in Fig. 15 (b) shows the case where the routing
betweenb and c is detoured due to congestion. In this case,
even thoughpath1 is the shortest path betweenS and T

without any congestion issue, the pathS-x-y-T shown as
path2 − path3 is the better routing path, because it shares
and utilizes the existing routed pathpath3, resulting in the
shorter total wirelength.

S

T

source group
target group

bridge group 1

bridge group 2

bridge group 3

Fig. 16. Multi-source multi-target with bridge maze routing model

Aware of the above mentioned cases, the proposed multi-
source multi-target with bridge (MMB) based maze routing in
Fig. 16 is implemented for AMR. The basic idea behind MMB
is to make the maze router honor the existing partial routed
paths of the net for shorter wirelength and less congestion.In
detail, the proposed model is based on three different groups
of G-cells as in Fig. 16.

• Source group: a group of G-cells which are electrically
connected to the source G-cellS.

• Target group: a group of G-cells which are electrically
connected to the target G-cellT .

• Bridge group: multiple groups of G-cells on the partial
routing paths which are connected to neither the source
S nor the targetT .

Note that identifying each group of G-cells can be done
with any graph traversal algorithm with trivial computational
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Algorithm 4 Adaptive Maze Routing
Input: Sources and targett of net N with box B

1: Find source groupGs of s

2: Find target groupGt of t

3: Find all bridge groupsGb1, Gb2, ... of N

4: A priority queueQ = φ

5: for each G-cellVx in Gs do
6: CostTx of Vx = 0
7: EnqueueVx into Q

8: end for
9: Best target G-cellVb = φ, Tb = ∞

10: while Q is not emptydo
11: dequeue a G-cellVx from Q

12: if Tx ≥ Tb then
13: break
14: end if
15: for each adjacent G-cellVy of Vx do
16: Tn = Algorithm 3 (Vx, Vy, B)
17: Ty = Tx + Tn

18: if Vy ∈ Gt andTy < Tb then
19: Vb = Vy, Tb = Ty

20: else if Vy ∈ Gbi then
21: for each G-cellVz in Gbi do
22: Tz = Ty

23: EnqueueVz into Q

24: end for
25: else
26: EnqueueVy into Q

27: end if
28: end for
29: end while
30: P = Backtrace the best path fromVb to any G-cell ofGs

Output: P

overhead. There can be multiple bridge groups in case that
many routed paths (from PreRouting or previous AMR) are
not connected with each other.

Flooding of the maze routing is started from the all the G-
cells in the source group, and is terminated when any G-cell
in the target group with the minimal cost is discovered. The
flooding within a bridge group is free by treating one bridge
group as a single virtual G-cell to encourage the utilization of
the existing routed paths for shorter total wirelength. Details
on AMR is in Algorithm 4.

It should be noted that MMB based maze routing may
change the initial Steiner tree structure according to the
congestion updated during routing, and this may negatively
affect the runtime as the maze router needs to search larger
space for the optimal routing path. This runtime issue can
be mitigated if the congestion-driven Steiner tree algorithm
is adopted. Note that simple wirelength-driven Steiner tree
algorithm is used in this work.

3) Box Expansion: After all the wires inside the box are
routed either by PILP or AMR, the boxi will be expanded
to box i+1, and new wires (c, d and k) are encompassed by
box i+1 as shown in Fig. 12 (e). The result after applying

BoxRouting (AMR after PILP) again is shown in Fig. 12 (f).
The amount of increment during box expansion significantly
affects the routing solution. As the box grows larger for
every expansion with bigger increment, the runtime increases
exponentially due to larger PILP problem size (more wires are
added into the formulation due to larger expansion). But, the
smaller overflow can be obtained, as the routing is performed
more globally. There can be several heuristics to determine
the increment such as constant increment size or dynamic
increment size, but it is required to keep PILP problem size
manageable. More discussion is presented in Section VI. After
all wires are routed (the box becomes big enough to cover
the whole circuit), PostRouting of Section V-D will follow
BoxRouting. Each wire in the box is optimally routed by PILP,
but the global optimality is not guaranteed as box expands.

To certain extend, BoxRouting mimics the diffusion ef-
fect which was originally proposed for placement migration
in [40]. By each BoxRouting step, all the wires in the more
congested region (within the box) are routed first by PILP, then
by AMR. This makes the wires outside the box detour the box,
if necessary. Such box expansion and congestion spreading
diffuses wires in a progressive and systematic manner.

Our box expansion can be initiated from multiple regions,
in case there are several congestion hotspots. This may lead
to better congestion distribution as well as improved runtime.
As the key idea behind box expansion is to diffuse wires
from more congested regions to less congested regions, in-
tuitively multiple box expansion has advantages. More impor-
tantly, multiple box expansion can be effectively performed
on multiprocessor/distributed computing environment dueto
two reasons:a) most commercial ILP solvers itself support
such computing environments;b) each PILP can be solved
independently as long as boxes are not overlapped. However,
several implementation issues such as where to begin (how
to define congestion hotspot) and when to stop should be
addressed with well-tuned heuristics.

D. PostRouting (Reroute without Rip-up)

As AMR in BoxRouting uses conservative strategy outside
the box as in Algorithm 3 (finding the most idle routing
path outside the box), it may create unnecessary detour and
overflow. Thus, PostRouting simply reroutes wires to remove
unnecessary overhead with box expansion initiated from the
most congested region, as done in BoxRouting. In detail,
a wire in the more congested region will be rerouted first,
and such rerouted wire can release the routing capacity, as it
may find the better routing path. Then, the surrounding wires
can be rerouted with the released routing capacity, potentially
reducing wirelength and overflow again. This chain reaction
propagates from the most congested region to less congested
regions along the box expansion. Consider the example in
Fig. 17 where two wiresx and y are routed around the G-
cell Vz. Before the PostRouting (thus, during BoxRouting),
the wire x detoursVz during AMR in Section V-C.2 due to
high congestion inVz in spite of the available routing capacity
R. However, ifR is still available after BoxRouting is finished,
then there is no reason to leaveR available at a cost of longer
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(a) routing before PostRouting
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(b) routing after PostRouting

Fig. 17. Example of PostRouting is shown. In (a), a routing capacity R is
not utilized by BoxRouting, as AMR finds less congested path.If R remains
unused after BoxRouting is finished, it may be the reason for suboptimal
routing path for a wirex. Thus, x can be rerouted by utilizingR, which
shortens a wirey with the released routing capacity fromx as well, as in (b).

wirelength. x can be rerouted throughR to minimize the
wirelength without causing any overflow. Afterx is rerouted,
the wirey which is detoured during BoxRouting due tox can
be rerouted as well using the routing capacity released after x

is rerouted, thus reducing wirelength again.

Algorithm 5 Maze Routing Cost for PostRouting
Input: G-cell Vx, Vy, ParamK

1: CostC = K

2: if cxy > 0 then
3: C = 1
4: end if

Output: C

AMR of Section V-C.2 is used again for PostRouting, but
with a different routing cost function in Algorithm 5, where
a user-defined parameterK is introduced. The parameter
K controls the trade-off between wirelength and routability
(overflow), by setting the cost of each overflow asK. Thus,
higher K will discourage overflow at a cost of wirelength
increase (more detours), but lowerK will suppress detour
at a cost of overflows. The effectiveness of parameterK is
discussed in Section VI.

Our PostRouting is more efficient than the widely used Rip-
up&Reroute (R&R), as PostRouting makes a wirevoluntarily
release a routing capacity (this happens, only when the so-
lution improves) during its rerouting, while R&R deprives it
from a wire in the congested region without guaranteeing any
improvement. Although R&R and PostRouting target for less
congestion, the approaches are different. While R&R rips up
the already routed wires to secure routing capacity directly,
PostRouting makes more routing capacity available indirectly
by shortening the wirelength of each wire (wirelength is
linearly proportional to the number of routing capacities in
use). PostRouting is guaranteed to find the equal or better
routing path for the given objective function, as the current
routing path can always be found as the worst case routing
path. Thus, the routing quality can be improved gradually by
repeating PostRouting.

VI. EXPERIMENTAL RESULTS

We implement BoxRouter in C++. All the experiments are
performed on a 2.8 GHz Pentium-4 Linux machine with 2G
RAM. Flute [37] with high accuracy option is used for Recti-
linear Minimum Steiner Tree, and GNU Linear Programming

TABLE II

ISPD98 IBM BENCHMARKS FORGLOBAL ROUTING

circuit routing graph lb.d

name cells nets wiresa grids v. capb h. capc wlen
ibm01 12036 11507 28232 64x64 12 14 60142
ibm02 19062 18429 55649 80x64 22 34 165863
ibm03 21924 21621 45727 80x64 20 30 145678
ibm04 26346 26163 53487 96x64 20 23 162734
ibm05 28146 27777 94304 128x64 42 63 409709
ibm06 32185 33354 82541 128x64 20 33 275868
ibm07 44848 44394 109365 192x64 21 36 363537
ibm08 50691 47944 133353 192x64 21 32 402412
ibm09 51461 50393 128708 256x64 14 28 411260
ibm10 66948 64227 182010 256x64 27 40 574407
a the number of wires after net decomposition
b vertical routing capacity
c horizontal routing capacity
d asymptotic lower bound wirelength [39] hereafter in this section

TABLE III

PREROUTING IN BOXROUTER FORISPD98 IBM BENCHMARKS

circuit PreRouting
name lb. wlen pr. wlena %
ibm01 60142 40992 68.2
ibm02 165863 109519 66.0
ibm03 145678 85628 58.8
ibm04 162734 94644 58.2
ibm05 409709 240781 58.8
ibm06 275868 172988 62.7
ibm07 363537 210904 58.0
ibm08 402412 243517 60.5
ibm09 411260 240928 58.6
ibm10 574407 336999 59.7

average 61.0
a prerouted wirelength

Kit (GLPK) 4.8 [34] is used as ILP solver. We use ISPD98
IBM benchmarks [1] for our experiments. Table II summarizes
each ISPD98 IBM benchmark circuit and its corresponding
grid graph model. The lower bound wirelength of each circuit
is computed by the most accurate GeoSteiner 3.1 [37], [39].

Table III shows the routing completion percentage after
PreRouting. On average, 61% of the lower bound wirelength
can be routed after PreRouting which is enough to capture
the overall congestion as well as the most congested region.
Further, over 61% routing completion even before the main
routing phase will improve the runtime.

Fig. 18 shows the overflow and runtime by the amount of
box increment (See Section V-C) for one benchmark. It clearly
shows that with larger box increment, the overflow decreases,
but the runtime increases exponentially. While the wirelength
varies only by 0.11%, the overflow decreases by 30%, but the
runtime increases by 500%. It indicates that with larger box
increment during box expansion of BoxRouting, the solution
quality can be improved at a cost of runtime.

The effectiveness of parameterK (See Section V-D) is
shown in Fig. 19. It shows that with largerK, overflow
decreases exponentially, but wirelength increases logarithmi-
cally. We constantly find that overflow saturates faster than
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Fig. 18. Overflow and runtime change by box increment for ibm04
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Fig. 19. Routability and wirelength trade-off by ParameterK

wirelength, and the best trade-off occurs betweenK=10 to
K=15 for all the tested benchmarks. Fig. 20 also shows the
runtime is independent of parameterK. The runtime variations
( stdev
average

) of ibm02 and ibm10 are only 0.7% and 0.5%
respectively, whileK varies from 1 to 30.

Table IV shows the routing results by BoxRouter withK=10
and K=15, the best trade-off found in Fig. 19. It shows that
BoxRouter has on average 3.4% and 3.7% wirelength overhead
(regarding the lower bound wirelength) forK=10 andK=15
respectively, and provides high quality solutions for larger
circuits with small overflows.

Table VI compares the congestion-initiated box expansion
with the random-initiated box expansion whenK=15. It shows
that the box expansion initiated from the most congested
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Fig. 20. Runtime change by ParameterK

TABLE IV

RESULTS FROMBOXROUTER FORISPD98 IBM BENCHMARKS

circuit BoxRouter (K=10) BoxRouter (K=15)
name lb.wlen wlena ovflb w.o(%)c wlen ovfl w.o(%)
ibm01 60142 65029 166 8.1 65193 126 8.4
ibm02 165863 177921 43 7.3 179086 33 8.0
ibm03 145678 149466 20 2.6 149879 9 2.9
ibm04 162734 171044 378 5.1 171756 342 5.5
ibm05 409709 409747 0 0.0 409747 0 0.0
ibm06 275868 281715 7 2.1 282002 5 2.2
ibm07 363537 374910 83 3.1 376247 81 3.5
ibm08 402412 408897 46 1.6 409584 31 1.8
ibm09 411260 417599 8 1.5 418023 4 1.6
ibm10 574407 590738 18 3.0 591820 10 3.0

average 3.4 3.7
a wirelength hereafter in this section
b overflow hereafter in this section
c wirelength overhead

region can improve the number of overflow by 33.1 % on
average, proving that it is more effective than randomly
initiated one in terms of congestion.

For thorough comparison, we download two available
global routers, Labyrinth 1.1 [1], [25] and Fengshui 5.1
(which has the newest implementation of theChi dispersion
router) [2], [41], and implement multicommodity flow-based
global router [3] in C++ (the binary is not available from the
author). Note that we use the same routine for Rectilinear Min-
imum Steiner Tree, congestion estimation, and maze routing
for fair comparison in the multicommodity flow-based global
router implementation. Although the results of Labyrinth and
Fengshui are reported in [2], we reproduce the results due to
the recent update in the benchmarks [1].

Table V shows the experimental results and comparison
for Labyrinth and Fengshui, and Table VII for the multi-
commodity flow-based router. As there is a trade-off between
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TABLE V

COMPARISON WITH LABYRINTH 1.1 [25] AND FENGSHUI 5.1 (Chi DISPERSION) [2] FOR ISPD98 IBM BENCHMARKS

circuit Labyrinth 1.1 Fengshui 5.1 BoxRouter Imprv. on Labyrinth Imprv. on Fengshui
name wlen ovfl cpu(s) wlen ovfl cpu(s) wlen ovfl cpu(s) wlen(%) ovfl(%) spd(x)a wlen(%) ovfl(%) spd(x)a

ibm01 76517 398 21.2 66006 189 15.1 65588 102 8.3 14.3 74.4 2.5 0.6 46.0 1.8
ibm02 204734 492 34.5 178892 64 47.9 178759 33 34.1 12.7 93.3 1.0 0.1 48.4 1.4
ibm03 185116 209 36.3 152392 10 35.2 151299 0 16.9 18.3 100 2.1 0.7 100 2.1
ibm04 196920 882 83.5 173241 465 54.1 173289 309 23.9 12.0 65.0 3.5 0.0 33.5 2.3
ibm05b 420583 0 59.2 412197 0 104.8 409747 0 49.5 - - - - - -
ibm06 346137 834 104.3 289276 35 80.1 282325 0 33.0 18.4 100 3.2 2.4 100 2.4
ibm07 449213 697 228.1 378994 309 122.2 378876 53 50.9 15.7 92.4 4.5 0.0 82.8 2.4
ibm08 469666 665 238.7 415285 74 113.8 415025 0 93.2 11.6 100 2.6 0.1 100 1.2
ibm09 481176 505 359.3 427556 52 125.1 418615 0 63.9 13.0 100 5.6 2.1 100 2.0
ibm10 679606 588 435.7 599937 51 212.9 593186 0 95.1 12.7 100 4.6 1.1 100 2.2

average 14.3 91.7 3.3 0.8 79.0 2.0
a speedup hereafter in this section
b ibm05 is dropped from comparison hereafter in this section, as it is a trivial case.

TABLE VI

IMPROVEMENTS ON THE RANDOMLY INITIATED BOX EXPANSION(K=15)

circuit Random Init.a Congestion Init. Imprv.
name wlen ovfl wlen ovfl wlen(%) ovfl(%)
ibm01 65089 171 65193 126 -0.2 26.3
ibm02 178924 55 179086 33 -0.1 40.0
ibm03 149895 15 149879 9 0.0 40.0
ibm04 171812 395 171756 342 0.0 13.4
ibm05 409744 0 409747 0 0.0 0
ibm06 282875 9 282002 5 0.3 44.4
ibm07 375584 115 376247 81 -0.2 29.6
ibm08 409025 58 409584 31 -0.1 46.6
ibm09 418131 7 418023 4 0.0 42.9
ibm10 592784 19 591820 10 0.2 47.4

average 0.0 33.1
a average of 10 random initiations from low congested regions

wirelength and routability, we choose the parameterK of
BoxRouter of Table Vwith wirelength constraint such that
wirelength from BoxRouter is as small as or smaller than
those from Labyrinth and Fengshui for fair comparison. Re-
garding Table VII, we first carefully choose the parameters
of the multicommodity flow-based router for each benchmark
such that the best results are yielded within 25 phases (the
maximum phase in [3]), then simulate ibm01, ibm02, ibm04
and ibm07 (circuits with non-zero overflow in Table V) again
for BoxRouterwithout any constraint.

As shown in Table V, BoxRouter outperforms Labyrinth
and Fengshui by wide margin. In terms of wirelength and
overflow, BoxRouter can reduce the wirelength by 14.3%, the
overflow by 91.7% compared with Labyrinth, and improve the
overflow by 79% with similar wirelength (actually 0.8% better)
compared with Fengshui. Also, BoxRouter is 3.3x and 2.0x
faster than Labyrinth and Fengshui respectively. Multicom-
modity flow-based router and BoxRouter show very compara-
ble overflow as shown in Table VII. However, BoxRouter is
on average 15.7x, up to 29x faster, and produces 4.2% shorter
wirelength on average than multicommodity flow-based router.
It implies that BoxRouter can provide high quality global
routing solution with significantly less design turn-around
time.

TABLE VII

COMPARISON WITH MULTICOMMODITY FLOW-BASED ROUTER[3] FOR

ISPD98 IBM BENCHMARKS

circuit Multicommodity BoxRouter Imprv.a

name wlen ovfl cpu(s) wlen ovfl cpu(s) wlen(%) spd(x)
ibm01 68981 43 151.2 67674 41 11.8 1.9 12.8
ibm02 190418 3 494.5 182268 2 35.7 4.3 13.9
ibm03 160755 0 329.8 151299 0 16.9 5.9 19.5
ibm04 176610 225 326.6 173778 249 31.4 1.6 10.4
ibm05 410954 0 28.2b 409747 0 49.5 - -
ibm06 296981 0 951.8 282325 0 33.0 4.9 28.9
ibm07 408510 0 1229.0 394170 0 50.8 3.5 24.2
ibm08 429913 0 865.7 415025 0 93.2 3.5 9.3
ibm09 442514 0 726.7 418615 0 63.9 5.4 11.4
ibm10 634247 0 1068.4 593186 0 95.1 6.5 11.2

average 4.2 15.7
a overflow is not shown, as both are highly comparable.
b only one phase is required for ibm05, a trivial case.

Figure. 21 shows pie chart for cputime break down averaged
from all the benchmark circuits. PreRouting takes negligible
amount of total cputime (1.4%), while routing over 60% of
wires. BoxRouting which may be considered the slowest part
of BoxRouter due to ILP takes about 25%, while PostRouting
takes over 57%. This proves that the proposed PILP is sig-
nificantly fast while providing high quality solution. On the
other hand, PostRouting which is mainly the maze routing is
the current bottleneck in runtime for BoxRouter.

So far, all the results from BoxRouter are with constant

Fig. 21. Pie chart for average cputime break down
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TABLE VIII

COMPARISON WITH DPROUTER [5] AND FASTROUTE 2.0 [4] FOR ISPD98 IBM BENCHMARKS

circuit DpRouter FastRoute 2.0 BoxRouter+ Imprv. on DpRouter Imprv. on FastRoute 2.0
name wlen ovfl cpu(s)a wlen ovfl cpu(s)a wlen ovfl cpu(s) pilpb rertc wlen(%) ovfl(%) spd(x) wlen(%) ovfl(%) spd(x)
ibm01 63857 125 2.4 68489 31 4.5 67052 0 261.6 2 50 -5.0 100 -109.0 2.1 100 -58.1
ibm02 178261 3 3.8 178868 0 3.5 174898 0 62.3 6 1 1.9 100 -16.4 2.2 - -17.8
ibm03 150663 0 0.8 150393 0 0.8 149949 0 43.0 6 1 0.5 - -53.8 0.3 - -53.8
ibm04 172608 165 14.7 175037 64 14.3 178653 37 1791.8 13 100 -3.5 77.6 -121.9 -2.1 42.2 -125.3
ibm06 286025 14 4.0 284935 0 3.9 282218 0 69.2 7 2 1.3 100 -17.3 1.0 - -17.7
ibm07 379133 99 6.9 375185 0 4.7 378933 0 889.5 11 30 0.1 100 -128.9 -1.0 - -189.3
ibm08 412308 56 11.5 411703 0 10.2 409337 0 262.9 13 4 0.7 100 -22.9 0.6 - -25.8
ibm09 419199 47 5.9 424949 3 5.5 418817 0 115.4 9 1 0.1 100 -19.6 1.4 100 -21.0
ibm10 598460 46 9.7 595622 0 8.2 587742 0 142.0 17 1 1.8 100 -14.6 1.3 - -17.3

average -0.2 97.2 -56.0 0.6 80.7 -58.5
a scaled runtime based on the runtime of Fengshui 5.1 in [26] and in Table V
b the number of PILP solved with up to 10,000 wires
c the number of PostRouting repeat

size of box increment and single PostRouting. However, it is
possible to alter the size of box increment dynamically, and
repeat PostRouting for further improvement. Instead of having
constant size of box increment, we fix the maximum number of
wires for each PILP which can be found by empirically testing
ILP solver. Consequently, box is kept expanded until it covers
the given maximum number of wires. We call the improved
BoxRouter as BoxRouter+ as shown in Table VIII, and com-
pare BoxRouter+ with the latest global routers, DpRouter [5]
and FastRoute 2.0 [4]. Also, it shows the number of PILP
instances with 10,000 maximum wires, and the number of re-
peated PostRouting. Overall, BoxRouter+ shows significantly
better routability than DpRouter and FastRoute 2.0 with com-
parable wirelength, and completes the most number of circuits.
However, BoxRouter+ is slower than DpRouter and FastRoute
2.0. The main bottleneck in BoxRouter+ depends on the
difficulty of each circuit. If a circuit is relatively easy, which
requires only one or two iterations of PostRouting, the main
runtime bottleneck is solving larger ILP instance. For harder
circuits, it requires multiple iterations of PostRouting which
makes it the bottleneck for runtime. However, considering that
the real bottleneck in VLSI routing flow is detailed routing,
better routability can compensate the runtime overhead, asit
can result in significant speedup in detailed routing.

VII. C ONCLUSION

In order to cope with the increasing impact of interconnect
on system performance, we present an efficient global router,
BoxRouter to maximize the routability with minimum wire-
length. Experimental results show that BoxRouter outperforms
the state-of-the-art publicly available global routers interms
of wirelength, routability, and runtime. As the BoxRouter
is still in beta version, we believe that further improvement
can be achieved with multiple box expansions, faster ILP
solver and so on. Current implementation of BoxRouter is
available at www.cerc.utexas.edu/utda. We plan to address
timing, crosstalk, and manufacturability issues on the topof
the BoxRouter framework.
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