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Abstract— Placement migration is the movement of cells within
an existing placement to address a variety of post-placement
design closure issues, such as timing, routing congestion, signal
integrity, and heat distribution. To fix a design problem, one
would like to perturb the design as little as possible while
preserving the integrity of the original placement. This work
presents a new diffusion-based placement method based on
a discrete approximation to the closed-form solution of the
continuous diffusion equation. It has the advantage of smooth
spreading, which helps preserve neighborhood characteristics of
the original placement. Applying this technique to placement
legalization demonstrates significant improvements in wire length
and timing compared to other commonly used techniques.

I. I NTRODUCTION

During placement and physical synthesis of VLSI circuits,
one is commonly faced with tasks such as cell spreading,
legalization of overlapping cells, and manipulation of the
placement to address objectives like power and routing con-
gestion. These tasks share a common theme of starting with
an initial placement that is “good” and perturbing it so that it
is improved in some way while still preserving the essential
characteristics (cell ordering, wirelength, etc.) of the original
placement. We call these sets of tasks “placement migration”.
Some specific examples of placement migration include the
following:

• During physical synthesis, one may insert buffers and
repower gates, thereby creating overlapping cells. The
new instance needs to be legalized, but one wants to avoid
moving any cell too far away from its original location.

• After placement, it may be necessary to make Engineer-
ing Change Orders (ECO) or insert decoupling capacitors
which requires spreading to resolve induced overlaps.

• Post routing congestion analysis may identify several
hot spots of congestion or crosstalk noise. Placement
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migration can locally spread out cells in these congested
or noisy regions [1].

• A global analytic or force-directed placer may use place-
ment migration to spread out the cells while attempting to
preserve the ordering induced by the overlapping analytic
solution.

This work presents a new technique for placement migration
based on the physical process of diffusion. Diffusion is a
well-understood physical process that moves elements (such
as dopants) from a state with non-zero potential energy to a
state of equilibrium. The process can be modeled by breaking
down the movements into several small finite time steps,
then moving each element the distance it would be expected
to move during that time step. Our approach to placement
migration follows this model; it moves each cell a small
amount in a given time step according to its local density
gradient. The more time steps the process is run, the closer
the placement gets towards achieving equilibrium. The primary
advantage to this approach is that it spreads the placement
smoothlywhich is more likely to preserve the integrity of the
original placement.

Among the various placement migration applications, le-
galization is perhaps the most straightforward. Therefore, the
remainder of the paper will discuss diffusion in this context.
The paper is organized as follows. Section II formulates the
legalization problem and reviews previous techniques. Section
III describes the mathematical formulation for diffusion in the
continuous space. Section IV presents the numerical algorithm
required to simulate the diffusion process. Section V gives the
diffusion-based legalization algorithm. Section VI introduces a
robust local diffusion algorithm which utilizeslocal diffusion
and dynamic density update to achieve better quality results
than the original diffusion algorithm and runs faster. It only
“diffuse” cells as necessary to make a placement legal. Ex-
perimental results are shown in section VII, followed by the
conclusion in section VIII. A preliminary version of this paper
was presented in DAC 2005 [2].

II. L EGALIZATION FORMULATION AND OVERVIEW

A placement is illegal if cells overlap or are not aligned with
circuit rows. The term “legalization” describes the problem of
taking an illegal placement and perturbing the layout so that
it is legal. The objective of legalization is for this perturbation
to be minimal in order to preserve the desired characteristics
of the given illegal placement.
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A. Formulation

A placement is close to legal if all that is required to legalize
the placement is to snap cells to rows or perhaps perform
minor cell sliding in order to fit the cells. Assume the chip
layout is divided into small, equal sized bins (which can fit
around 5-15 cells for example). Letdmax be the maximum
allowed density of a bin, where commonlydmax = 1. The
placement is considered close to legal if the area density of
every bin is less than or equal todmax. For all bins with
density greater thandmax, cells must be migrated out of those
bins into less dense ones. The goal of legalization is to reduce
the density of each bin to no more thandmax while avoiding
moving these cells far from their original locations and also
to preserve the ordering induced by the original placement.

B. Existing Legalization Techniques

Existing legalization techniques include network flow [3],
heuristic ripple cell movement [4] , dynamic programming
[5], single row optimization [6] [7], packing [8] and other
heuristics [9] [10] [11] [12] [13].

The network flow approach [3] models the bins as a
minimum-cost network flow graph and then flows cells out of
high-density bins into low-density bins. Its objective function
is to minimize a weighted sum of squared cell movements.
Like network flow, Mongrel [4] legalizes by moving cells
out of bins that exceed their capacity. Mongrel iteratively
computes a low cost path of movement from a source bin
to a destination bin, then ripples cells from the source to the
destination by only allowing cells to move by at most one bin.
The approach used by [5] tries to legalize one row at a time
while preserving the original cell order. If not all the cells fit
in the row, it uses dynamic programming to decide which cells
to preserve in the row and which ones to push into the next
row. Similar to [5], the approach of [6] optimizes cell locations
for a single row to optimize wirelength and cell perturbation.
Another row based legalization is introduced in [7], which
uses a shorted path algorithm to optimize either perturbation
or wirelength. A simple and effective technique [8] is to sort
all the cells based on their x coordinates then place one by
one like packing. And other heuristics [9] [10] [11] [12] [13]
employ greedy heuristics to legalize placement.

An incremental placement based approach [14] can be used
for legalization of large placement changes as the result of
buffer insertion and gate sizing. It uses a slicing tree to
represent the original floorplan, adjusts the size of each slice
to accommodate additional placement demands and finally
applies a detailed placer that can preserve the whitespace
distribution. Although this approach can optimize wirelength
and preserve white space, as a detailed placement algorithm it
could significantly change the placement relative order which
might have unpredictably impact on existing timing.

There are a few spreading techniques that can also be used
for legalization potentially. These techniques [15] [16] [17]
were originally designed to spread out cells in congested
regions during analytical placement. [15] uses grid-warping
technique to move cells as they are tethered to a warping
grid; [16] uses a similar technique as [4] to move cells from

congested bins to their neighboring bins; [17] uses a cell
shifting technique to reduce the maximum bin density.

Although all these techniques can be used to perturb the
placement, the perturbation is rather discrete compared to the
diffusion-based method that is more continuous and smooth.
Another technique for smooth cell movement is proposed in
[18] recently. Similar to diffusion, it uses bin density gradient
to spread out cells globally. The difference is that it moves
cells as if they are tethered to an expanding grid, while
diffusion moves cells directly based on density. Although [18]
also uses a computational geometry based method to further
arrange cells locally while maintaining the local relative order,
these two methods produce similar results as the experiment
section will show.

C. Force-Directed Techniques

One may view force-directed global placement (e.g., [19])
as a legalization technique. The algorithm starts with an
overlapping global placement. It then adds forces based on the
density of the layout to spread out the placement, proceeding
iteratively. At first glance diffusion (DIFF) and force-directed
spreading (FORCE) share a common approach of using the
existing density map to spread out cells until bin density con-
straints are satisfied. However, there are several key differences
between these approaches.
• FORCE generates spreading forces from aglobal density

distribution, while DIFF generates cell velocities from
local densities.

• FORCE models the placement density as anelectricfield
that acts on the cells; each cell has some attraction or
repulsion to each region of the layout. On the other
hand, DIFF physically models the placement density as
a diffusionprocess in which cells move along their local
density gradients.

• Because their abstract physical models are different,
so are the solution techniques. FORCE solveslinear
algebraic equationsgenerated by cell connections and
spreading forces, while DIFF solves thepartial differen-
tial equationgenerated by local neighborhood densities.

• FORCE requires cellconnectionand density information
for spreading, while DIFF only needsdensityinformation.
DIFF does not consider the circuit connectivity.

III. T HE DIFFUSION PROCESS

Algorithms which model the physical process of diffusion
are not common in the VLSI physical design area, though
they do exist elsewhere in the semiconductor industry. For
example, the dopant diffusion process on chip substrate is a
well known diffusion process [20]. Intuitively, materials from
highly concentrated areas flow into less concentrated areas.
Diffusion is driven by the concentration gradient, which is the
slope and steepness of the concentration difference at a given
point. The increase in concentration in a cross section of unit
area with time is simply the difference of the material flow
into the cross section and the material flow out of it. Diffusion
reaches an equilibrium state when the material concentration
is uniformly distributed.
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Mathematically, we can describe the relationship of material
concentration with time and space using the following partial
differential equation.

∂dx,y(t)
∂t

= D∇2dx,y(t) (1)

wheredx,y(t) is the material concentration at position(x, y)
at time t andD is the diffusivity which determines the speed
of diffusion. For simplicity of presentation, assumeD = 1
for the rest of the paper. Equation (1) states that the speed
of density change is linear with respect to its second order
gradient over the density space. This implies that elements
migrate with increased speed when the local density gradient
is higher. In the context of placement, cells will move quicker
when their local density neighborhood has a steeper gradient.

When the region for diffusion is fixed (as in placement),
the boundary conditions are defined as∇dxb,yb

(t) = 0 for
coordinates(xb, yb) on the chip boundary. We also define
coordinates over fixed blocks in the same way in order to
prevent cells from diffusing on top of fixed blocks. This forces
cells to diffuse around the blocks.

In diffusion a cell migrates from an initial location to its
final equilibrium location via a non-direct route. This route
can be captured by a velocity function that gives the velocity
of a cell at every location in the circuit for a given timet.
This velocity at certain position and time is determined by
the local density gradient and the density itself. Intuitively, a
sharp density gradient causes cells to move faster. For every
potential(x, y) location, define a 2-dimensional velocity field
vx,y = (vH

x,y, vV
x,y) of diffusion at timet as follows:

vH
x,y(t) = −∂dx,y(t)

∂x
/dx,y(t)

vV
x,y(t) = −∂dx,y(t)

∂y
/dx,y(t) (2)

Given this equation, and a starting location(x(0), y(0)) for
a particular element, one can find the new location(x(t), y(t))
for the element at timet by integrating the velocity field:

x(t) = x(0) +
∫ t

0

vH
x(t′),y(t′)(t

′)dt′

y(t) = y(0) +
∫ t

0

vV
x(t′),y(t′)(t

′)dt′ (3)

Equations (1), (2), (3) are sufficient to simulate the diffusion
process. Given any particular element, one can now find the
new location of the molecule at any point in timet. To apply
this paradigm to placement, one needs to migrate from a
continuous space to a discrete place since cells have various
rectangular sizes and the placement image itself is discrete.
The next section presents a technique to simulate diffusion
specifically for placement.

IV. D IFFUSION BASED PLACEMENT

One can discretize continuous coordinates by dividing the
placement areas into equal sized bins indexed by(j, k).
Assume the coordinate system is scaled so that the width and
height of each bin is one. Then location(x, y) lies inside bin
(j, k) = (bxc, byc). We can also discretize continuous timet
asn∆t, where∆t is the size of the discrete time step.

A. Computing Bin Density

Instead of the continuous densitydx,y, we now can describe
diffusion in the context of the densitydj,k of bin (j, k). The
initial density dj,k(0) of each bin(j, k) can be defined as
dj,k(0) = ΣÂi whereÂi is the overlapping area of celli and
bin (j, k).

For simplicity, assume that if a fixed block overlaps a bin,
it overlaps the bin completely. In these cases, the bin density
is defined to be one, though boundary conditions prevent cells
from diffusing on top of fixed blocks.

Assume that the densitydj,k(n) has already been computed
for time n. Now one needs to find how the density changes
and cells movements for the next time stepn + 1. We use
the Forward Time Centered Space (FTCS) [21] scheme to
discretize Equation (1). The new bin density is given by

dj,k(n + 1) = dj,k(n) (4)

+
∆t

2
(dj+1,k(n) + dj−1,k(n)− 2dj,k(n))

+
∆t

2
(dj,k+1(n) + dj,k−1(n)− 2dj,k(n))

The new density of a bin at timen + 1 depends only on its
density and the density of its four neighbor bins. Note that
one does not actually use the cell locations at timen + 1
to compute the density. The degree of migration out of (or
into) the bin is proportional to its local gradient. For example,
consider a density distribution at a given timen shown in Fig.
1 and assume∆t = 0.2. The density of bin(1, 1) at timen+1
is given by:

d1,1(n + 1) = d1,1(n) +
0.2
2

(d2,1(n) + d0,1(n)− 2d1,1(n))

+
0.2
2

(d1,2(n) + d1,0(n)− 2d1,1(n)) = 0.98

B. Computing Cell Velocity

Just as Equation (1) can be discretized to compute place-
ment bin density, Equation (2) can be discretized to compute
the velocity for cells inside the bins. For now, assume that
each cell in the bin is assigned the same velocity, the velocity
for the bin, given by:

vH
j,k(n) = −dj+1,k(n)− dj−1,k(n)

2dj,k(n)

vV
j,k(n) = −dj,k+1(n)− dj,k−1(n)

2dj,k(n)
(5)

The horizontal (vertical) velocity is proportional to the differ-
ences in density of the two neighboring horizontal (vertical)
bins. For example, the velocity for bin(1, 1) in Fig. 1 is given
by:

vH
1,1 = − d2,1 − d0,1

2d1,1
= −0.4− 1.4

2(1.0)
= 0.5

vV
1,1 = − d1,2 − d1,0

2d1,1
= −0.4− 1.6

2(1.0)
= 0.6

Similarly, densities for other bins are given byv1,2 =
(0.5, 0) , v2,1 = (0.25,−0.25) and v2,2 = (−0.125, 0.125).
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Fig. 1. Density and velocity distribution at timen.

 

v2,1 

v2,2 v1,2 

v1,1 

v1.6,1.8 

Bin (1,1) Bin (2,1) 

Bin (1,2) Bin (2,2) 

3.0=β

1.0=α  

Fig. 2. Velocity interpolation within a bin.

Note that bin(1, 2) has no vertical velocity component since
the densities both above and below are equal to 1.0. To make
sure that fixed cells and bins outside the boundary do not
move, we enforcevV = 0 at a horizontal boundary and
vH = 0 at a vertical boundary.

C. Cell Velocity Interpolation

Assuming that each cell in a bin has the same velocity fails
to distinguish between the relative locations of cells within
a bin. Further, two cells that are placed sided by side but
in different bins can be assigned very different velocities,
which could change their relative ordering. Since the goal of
placement migration is to preserve the integrity of the original
placement, this behavior cannot be permitted. To remedy this
behavior, we apply velocity interpolation to generate a velocity
for any given(x, y).

Let bin (p, q) be such that the four closest bin centers to
(x, y) are (p, q), (p + 1, q), (p, q + 1) and (p + 1, q + 1). Let
α = x + 0.5 − bx + 0.5c and β = y + 0.5 − by + 0.5c. If
α = β = 0, then(x, y) is located at the center of bin(p, q) and
its velocity is given velocityvp,q. As shown in Fig. 2, the bin
velocity will be marked at the center of each bin. The velocity
for a point inside of a bin is interpolated by the velocities at
its four closest centers. The velocity for cell(x, y) (denoted

 

x(0),y(0) 

x(9),y(9) 

Fig. 3. A cell movement trajectory during diffusion.

by (vH
x,y, vY

x,y)) is given by

vH
x,y = vH

p,q + α(vH
p+1,q − vH

p,q) + β(vH
p,q+1 − vH

p,q)

+αβ(vH
p,q + vH

p+1,q+1 − vH
p+1,q − vH

p,q+1)

vV
x,y = vV

p,q + α(vV
p+1,q − vV

p,q) + β(vV
p,q+1 − vV

p,q)

+αβ(vV
p,q + vV

p+1,q+1 − vV
p+1,q − vV

p,q+1) (6)

Consider the example shown in Fig. 2, which is actually a
close-up of Fig. 1. For an example location(x = 1.6, y = 1.8),
we haveα = 0.1 andβ = 0.3. The velocity for this point is
given by:

vH
1.6,1.8 = vH

1,1 + 0.1(vH
2,1 − vH

1,1) + 0.3(vH
1,2 − vH

1,1)

+0.03(vH
1,1 + vH

2,2 − vH
2,1 − vH

1,2) = 0.45625

vV
1.6,1.8 = vV

1,1 + 0.1(vV
2,1 − vV

1,1) + 0.3(vV
1,2 − vV

1,1)

+0.03(vV
1,1 + vV

2,2 − vV
2,1 − vV

1,2) = 0.40175

D. Computing Cell Location

Since the velocity for each cell can be determined at time
n = t

∆t , one can compute its new placement via a discretized
form of Equation (3). It is easier to comprehend (and it is
more useful) in its recursive form. Suppose we have already
computed (x(n), y(n)). Using Taylor expansion gives compute
x(n + 1), y(n + 1) as:

x(n + 1) = x(n) + vH
x(n),y(n) ·∆t

y(n + 1) = y(n) + vV
x(n),y(n) ·∆t (7)

An example is shown in Fig. 3 in which a cell takes
nine discrete time steps. Observe how the cell never overlaps
a blockage and also how the magnitude of its movements
becomes smaller toward the tail end of its path.

V. D IFFUSION-BASED LEGALIZATION

ALGORITHM

Now that we have presented the general diffusion paradigm,
we show how to apply this technique to legalization. Recall
that to legalize the design, we require each bin to have density
dj,k ≤ dmax. Once this is achieved, local slide and spiral
methods can be used to quickly and easily achieve a legal
placement. Thus we are given an existing placement with
locations (xi, yi) for each celli, N placement bins, and a
maximum bin densitydmax.
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d1,0=1.3 

d0,0=1 

d1,1=0.6 

d0,1=0.8 

d1,0=1.3 

d0,0=1 

d1,1=0.8 

d0,1=0.9 

~ ~ 

~ ~ 

Fig. 4. The initial density map is modified to a new density map so that the
average bin density is 1.0.

A. Density Map Manipulation

Since the diffusion process reaches equilibrium when each
bin has the same density, we can expect the final den-
sity after diffusion to be the same as the average density
Σdj,k/N . This may cause unnecessary spreading especially
if the average density is well below the maximum density
constraint. For example, once every bin is below the maximum
density constraint, diffusion can cause additional spreading
even though the requirements for legalization have been met.
This spreading will no doubt further perturb the placement
from its original state.

Therefore, before beginning diffusion we need to properly
set the initial density values of those bins under the maximum
density. To achieve this, we artificially increase the densities
of those bins less thandmax so that the average density equals
dmax.

One way to adjustdj,k is

d̃j,k =
{

dmax − (dmax − dj,k)Ao

As
dj,k < dmax

dj,k dj,k ≥ dmax
(8)

whereAo is the total area overdmax andAs is total area less
thandmax, which is the available space to hold theAo after
spreading. We can validate thatΣd̃j,k

N = dmax.
Fig. 4 shows an example of the density manipulation for a

2 × 2 bins. In the left figure, there is one bin whose density
1.3 is over the maximum allowed density1, two bins whose
densities are lower than1, and the other bin whose density
is exactly1. ThereforeAo = d1,0 − 1 = 0.3 and As = (1 −
d1,1)+(1−d0,1) = 0.6. If we adjust the density on those two
bins under1 with (8), we will get the density map shown on
the right, d̃0,0+d̃0,1+d̃1,0+d̃1,1

4 = 1.
d̃j,k will be used as the initial condition (t = 0) for the

diffusion equation (4),

dj,k(0) = d̃j,k. (9)

B. Macro and Chip Boundary Handling

At the boundary of the chip or a fixed macro, there is no
diffusion between either side of the boundary. Therefore, we
need to make the densities on both sides the same to assure the
density gradient is zero when computing (4). On a horizontal
boundary, we makedj,k+1(n) = dj,k−1(n) if bin (j, k) is on
the lower side of the boundary, ordj,k−1(n) = dj,k+1(n) if
on the upper side; while on a vertical boundary,dj+1,k(n) =
dj−1,k(n) if on the left side, ordj−1,k(n) = dj+1,k(n) if on
the right side.

For example, suppose∆t = 0.2 and bin(4, 3) to (5, 4) are
fixed, the density value for timen is shown in Fig. 5. Bin(3, 4)

 

d2,5=1.2 

d2,4=1.4 

d3,5=0.4 

d3,3=1.6 d4,3=1.0 

d3,4=0.8 d4,4=1.0 

d4,5=0.8 

d4,6=0.2 

d5,5=0.6 

d3,6=1.0 

d5,4=1.0 

d5,3=1.0 

Fig. 5. Bins with fixed blocks are shaded to illustrate density computations
under boundary conditions.

is on the left vertical boundary of the fixed macro, while bin
(4, 5) is on the upper horizontal boundary. When computing
d3,4(n + 1), we maked4,4(n) = d2,4(n), thus (4) becomes:

d3,4(n + 1) = d3,4(n) +
0.2
2

(d2,4(n) + d2,4(n)− 2d2,3(n))

+
0.2
2

(d3,5(n) + d3,3(n)− 2d3,4(n)) = 0.96.

Similarly, we maked4,4(n) = d4,6(n) to computed4,5(n+1),

d4,5(n + 1) = d4,5(n) +
0.2
2

(d3,5(n) + d5,5(n)− 2d4,5(n))

+
0.2
2

(d4,6(n) + d4,6(n)− 2d4,5(n)) = 0.62.

For bins inside of fixed macros, we do not update the
density.

C. Algorithm

The algorithm begins by computing the initial bin density
using the given placement, then manipulates the density map
to avoid over spreading. Starting from time0, it recursively
computes bin density, bin velocity and cell locations for each
time stepn. It stops when the maximum bin density is less than
dmax. The complete diffusion algorithm is given in Algorithm
1.

After diffusion, the placement should have a maximum
density ofdmax and is roughly legal. We need to run a final
legalization step to put cells in a circuit row without overlap.
Any legalizer can be used at this step. It will only take the
legalizer a little effort to remove those overlaps. Here we use
the IBM CPlace internal legalizer.

Fig. 6 shows an example of diffusion-based legalization in a
small region surrounded by fixed blocks. The left figure shows
the initial illegal placement. The right figure is the placement
out of legalization. Cells are shaded to represent their relative
order. We can observe that after diffusion the relative orders
are not changed.

VI. ROBUST LOCAL DIFFUSION

The diffusion based legalization algorithm introduced in
previous sections provides a smooth global solution based on
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Algorithm 1 Diffusion-based Legalization Algorithm

Inputs: cell locations (xi, yi), N bins, maximum density
dmax

1: map cells onto bins and computedj,k for each bin(j, k)
2: computed̃j,k using (8), the average bin density is now

dmax

3: dj,k(0) ← d̃j,k

4: n ← 0
5: repeat
6: computevH

j,k(n), vV
j,k(n) for each bin(j, k) using (5)

7: compute xi(n), yi(n) for each cell i using (7) and
velocity interpolation (6)

8: computedj,k(n + 1) for each bin(j, k) using (4)
9: n ← n + 1

10: until max(dj,k(n)) ≤ dmax + ∆

Fig. 6. Placements before and after diffusion-based legalization.

the diffusion process. Diffusion global legalization is tightly
coupled with the following detailed legalization because the
diffusion algorithm is continuous. This diffusion algorithm,
however, could still move cells in legal regions which might
result in unnecessary cell displacement, and the run time is a
bit higher than other global algorithms as shown in section VII.
Therefore a fast and robust diffusion algorithm which moves
fewer cells is needed. Another major contribution of this paper
is that we introduce a robust local diffusion algorithm, which
utilizes a couple of fast and robust diffusion techniques that
only “diffuse” cells as necessary to legalize placement, thus
making fewer cell movements and using less run time than
the diffusion algorithm described in previous section. The first
technique is local diffusion, the second is dynamic density
update. The reasoning and details of these techniques are given
in this section.

A. Local Diffusion

The diffusion algorithm as shown in Algorithm 1 can
be calledglobal diffusion because it moves cells wherever
there exists any density difference between adjacent bins.
With initial density manipulation, we can limit the amount of
spreading to be just enough to reduce densities of illegal bins
(where bin densities are higher than the target density) to the
target density. However, it still could move cells in legal bins
(where bin densities are less than target density) unnecessarily
because the spreading is global. The stopping criteria only
check whether the maximum bin density is less than the target
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Fig. 7. Global vs. local diffusion example.

density, it does not check for each bin. Therefore, it could
move cells in those bins whose densities are already less than
the target density as long as there is a density difference
between adjacent bins. In other words, cells all over the chip
could end up moving, even if moving cells from illegal bins
to their adjacent bins is enough to satisfy the target density.
The ideal diffusion for legalization should belocal, which only
spreads out cells from illegal bins to nearby free space without
moving cells in other legal bins unnecessarily.

Diffusion examples for both global and local diffusion are
shown in Fig. 7. Suppose there are a total of 9 bins, and that
the upper left bin has a density of 150%, while the remaining 8
bins are lesser or equal to 100% density. The diffusion process
using initial density manipulation will move cells in almost
every bin. For example, the density of the bin at the lower
right hand corner increases 6%, which comes from cells moved
into this bin. However, as shown in the local diffusion figure,
there is a local solution that only affects the adjacent bins of
the overflowed bin. The total amount of movement in this local
solution is much less than the global solution.

We propose to use a diffusion window to implement local
diffusion, which only spreads out cells in a window around
bins with higher density than the target density. The procedure
of identifying diffusion windows is described in Algorithm 2.

This procedure first sets the move type of each bin as fixed.
Then for each bin(j, k), it computes the average densityd′j,k
of bins within a distance ofW1 to bin (j, k). W1 can range
from 1 to 10 bins. If the average density is larger than the
targeted densitydmax, then it marks those bins which are
W2 (W2 >= W1) distance away from bin(j, k) as movable.
Conceptually, this procedure first analyzes the average bin
density with the analysis windowW1, then it allows diffusion
to work on the diffusion windowW2 around those bins with
average density greater than the target density. This is because
the final legalization does not need all the bins’ densities less
than 1. As long as the average local density is less than1,
the detailed legalization algorithm can make them legal quite
easily. Therefore we only use average bin density of a window
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Algorithm 2 Identify Local Diffusion Window
Inputs: max densitydmax, analysis window sizeW1 and

diffusion window sizeW2

1: for all bin (j, k) do
2: initialize bin (j, k) as fixed
3: for all bin (j, k) do
4: d′j,k = 0;N = 0
5: for all bin (j′, k′) within a distance ofW1 to (j, k) do
6: d′j,k = d′j,k + dj′,k′

7: N = N + 1
8: d′j,k = d′j,k/N
9: if d′j,k greater thandmax then

10: for all bin (j′, k′) within a distance ofW2 to (j, k)
do

11: mark bin (j′, k′) as movable

to measure whether we need to diffuse, and mark those bins
far away from overflowed region as fixed. If bins are marked
as fixed, the diffusion process will not move any cells in those
bins as described in [2].

The window sizesW1 andW2 determine how much spread-
ing the diffusion process would produce and the speed of
spreading. In section VII we will examine the impact of the
window size to legalization performance.

After a certain period of diffusion steps, Algorithm 2 should
be invoked again to correctly reflect the density distribution at
that time. Note that local diffusion does not require the initial
density manipulation step because the window identification
process guarantees the minimum spreading.

B. Dynamic Density Update

Although we can use (4) to compute bin densities during
the diffusion process, the computed densities are not exactly
the same as the real placement densities. The equations of
the physical diffusion process (4) (5) (7) assume continuous
density distribution. However, the real standard cell distribu-
tion does not always satisfy this condition. First, cells are not
equally distributed inside a bin. For example, it is possible
that all the cells inside of a bin are on the right side of the
bin. As shown in Fig. 8, the left bin contains 100% cells that
are clustered on the right side of the bin. The target density
is 50%. the diffusion process would move all the cells in that
bin to the adjacent bin on the right. This would make the final
density of the right bin100% and the left bin 0%, which is
different than the computed density equilibrium of50% on
both bins. Second, cells have different sizes, and moving one
cell might pertub the design more than moving another. Third,
the error of integral equation (7) may accumulate. Therefore,
it is necessary to update the density based on the real cell
placement when the error exceeds a certain threshold.

Since errors are associated with diffusion simulation, we
could update the density map for every simulation stepNU .
We choose to update density whenever we need to identify a
local diffusion window. The impact of density update period
on the legalization performance is studied in section VII.

 

Fig. 8. Density error caused by irregular cell distribution.

C. Robust Local Diffusion Algorithm

In this section, we put together the complete legalization
flow based on the robust local diffusion algorithm. As shown
in Algorithm 3, we iteratively identify local diffusion window
(Algorithm 2) and run diffusion Algorithm 1 to perform local
diffusion. When we can no longer reduce the total bin density
overflow, we put cells on circuit row and eliminate all overlaps
to finalize the placement.

Algorithm 3 Robust Local Diffusion-based Legalization
1: repeat
2: identify local diffusion regions (Algorithm 2)
3: run diffusion forNU steps (Algorithm 1)
4: update bin density
5: until no improvement in overflow
6: final legalization

VII. E XPERIMENTAL RESULTS

This section reports experimental results for the global
diffusion-based legalizer (DIFF (G)) and robust local
diffusion-based legalizer (DIFF (L)) by comparing it to a
greedy legalizer (GREED) which uses slide-and-spiral tech-
niques to place cells onto their nearest legal locations and
to a network flow legalizer (FLOW ) which uses a min-cost
flow algorithm to direct cell movements.FLOW is similar
to [3]: first, cells are roughly spread out by the min-cost flow
algorithm, then they are moved to their final positions such
that all overlaps are removed.GREED sorts all the cells
and places them sequentially. It first tries to place a cell at
the original location. If that location is occupied, it performs
a spiral search starting from the original location. During a
spiral search, it could slide other placed cells a little bit in
order to fit in. All four legalizers are implemented inC and
run on an IBM P690 server. The timing results are reported
by IBM Einstimer.

We use seven industrial circuits for comparison. The sizes
of circuits range from 64K cells to over a million cells. All the
circuits are legally placed initially. To simulate the behavior
of repowering in physical synthesis we inflate cells and create
overlaps that need to be resolved. The circuit sizes and amount
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TABLE I

DESIGN SIZES AND INFLATIONS

testcases number of cells size(mm) Inflation(%)
ckt1 64K 1.9 x 1.9 23.1
ckt2 72K 2.3 x 2.3 32.4
ckt3 159K 5.3 x 5.3 47.2
ckt4 216K 9.0 x 9.0 40.4
ckt5 307K 11.9 x 11.9 25.4
ckt6 440K 10.0 x 10.0 42.2
ckt7 1076K 13.0 x 13.0 18.9

of inflations are reported in Table I. The inflations are reported
as the percentage with respect to the total moveable cell areas.

A. Legalization Performance

Tables II, III, and IV show theTWL, worst slack and
FOM1 results of the four legalizers. Since we inflate cells,
the new placement has longer wire length, worse slack and
FOM than those of the original placements. The absolute∆
and relative∆ rows of each table report the average improve-
ments ofDIFF (G) and DIFF (L) over the best result of
FLOW andGREED. The relative∆ measures the relative
improvement of the results before and after legalization. For
example, onckt1, GREED increases theTWL by 13.23−
11.48 = 1.75, while DIFF (L) only increases theTWL by
12.11 − 11.48 = 0.63, therefore the relative∆ is (1.75 −
0.63)/1.75 = 64%. We can observe that bothDIFF (G) and
DIFF (L) achieve smallerTWL thanFLOW or GREED.
The average relative improvement ofTWL over seven circuits
is 17% for DIFF (G) and35% for DIFF (L). The average
improvement on wiring congestion after global routing is27%
and 35% for DIFF (G) and DIFF (L), respectively (the
detailed numbers are not shown to save space). The slack
and FOM degradations ofDIFF (G) and DIFF (L) are
also much less than those ofFLOW and GREED. The
average improvements of slack over the best ofFLOW and
GREED are 48% and 63% by DIFF (G) and DIFF (L),
respectively. And the average improvements ofFOM over the
best ofFLOW andGREED are36% and62%. These results
are actually conservative because inckt5, ckt6 andckt7, the
inflation did not cause a larger amount of overlaps due to
sparse initial placements. We have also compared the four
legalizers on industry circuits generated by physical synthesis
without legalization, and the results consistently show that
DIFF results in better timing,TWL and congestion for those
circuits.

Table V reports the runtimes for four legalizers. Although
the runtime of DIFF (G) is about 2X of FLOW , the
DIFF (L) is in the ballpark of the other two legalizers. On
average,DIFF (L) actually runs slightly faster than those
two.

We also testFLOW and DIFF (G) with different cell
overlapping distributions, i.e., through distributed or concen-
trated inflations. Table VI shows the results ofDIFF (G)
(referred asD(G)) and FLOW on the same circuitckt1

1FOM is a metric that measures the amount of work needed for a designer
to close timing; basically it is weighted area under the timing histogram of
the paths with negative slack [22].

TABLE II

TWL COMPARISON OFFOUR LEGALIZERS (M)

testcases Base GREED FLOW DIFF (G) DIFF (L)
ckt1 11.48 13.23 13.40 12.46 12.11
ckt2 15.06 17.03 17.33 16.65 16.17
ckt3 47.10 52.47 52.65 51.76 50.72
ckt4 51.37 59.02 58.67 56.85 55.71
ckt5 150.8 159.0 159.2 158.7 157.4
ckt6 166.6 175.6 175.4 174.8 173.1
ckt7 367.7 382.7 382.5 381.7 379.8

absolute∆ 1.9% 3.6%
relative∆ 16.8% 35.0%

TABLE III

WORSTSLACK COMPARISON OFFOUR LEGALIZERS (NS)

testcases Base GREED FLOW DIFF (G) DIFF (L)
ckt1 -0.571 -1.266 -1.497 -0.921 -0.900
ckt2 0.275 -0.287 -0.789 -0.065 0.001
ckt3 -0.265 -1.155 -1.121 -0.265 -0.265
ckt4 -1.592 -3.569 -3.447 -2.373 -2.151
ckt5 -0.623 -6.072 -3.640 -2.047 -1.97
ckt6 -0.387 -3.450 -3.562 -3.305 -3.103
ckt7 -0.796 -1.601 -1.274 -0.796 -0.796

absolute∆ 42.5% 48.1%
relative∆ 48.0% 62.9%

TABLE IV

FOM COMPARISON OFFOUR LEGALIZERS (NS)

testcases Base GREED FLOW DIFF (G) DIFF (L)
ckt1 -3188 -4942 -8441 -3883 -2552
ckt2 0 -247 -620 -319 -169
ckt3 -446 -1073 -1054 -524 -511
ckt4 -557 -1321 -1068 -862 -753
ckt5 -144 -4827 -4871 -3069 -2677
ckt6 -15286 -24694 -24154 -22936 -22543
ckt7 -2583 -5391 -7631 -4157 -3919

absolute∆ 18.0% 34.2%
relative∆ 36.3% 62.2%

TABLE V

CPU TIME COMPARISON OFFOUR LEGALIZERS (S)

testcases GREED FLOW DIFF (G) DIFF (L)
ckt1 161 55 107 51
ckt2 41 24 74 34
ckt3 228 197 290 125
ckt4 320 313 581 153
ckt5 414 584 841 323
ckt6 619 626 1231 910
ckt7 2102 1768 4681 2034

Average 1 0.86 1.68 0.77

but with different inflation distributions. The inflations are
centralized (C), or evenly distributed (D). The amounts of
inflations are 23% and 18% for centralized and distributed
cases, respectively. The localized inflation mimics a hot-
spot that needs to be spread out. The distributed inflation is
more like legalization after physical synthesis. The∆ row
reports the difference ofC and D. Both DIFF (G) and
FLOW get worse results on concentrated inflation distribution
than those on distributed inflation distribution, although the
amount of inflations are actually smaller for concentrated case.
However, we can observe thatDIFF (G) is less sensitive to
the inflation distribution thanFLOW . TheTWL degradation
of DIFF (G) is only 0.16m compared to1.06m of the
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Fig. 9. Total cell movement during diffusion on ckt1.

FLOW . The slack andFOM degradation ofDIFF (G) is
also significantly lower than those ofFLOW . This indicates
that diffusion-based legalization can handle hot-spot situation
better than the network flow based method.

TABLE VI

INFLATION DISTRIBUTION EFFECT ONLEGALIZATION

TWL (m) Slack (ns) FOM (ns)
type(%) FLOW D(G) FLOW D(G) FLOW D(G)
D(23) 13.40 12.46 -1.497 -0.921 -8441 -3883
C(18) 14.46 12.62 -1.976 -1.253 -11822 -4361

∆ 1.06 0.16 -0.479 -0.332 -3381 -478

B. Movement and Overflow Analysis for Diffusion

Bin density overflow and cell movements are two most im-
portant measurements for diffusion legalization algorithm. As
described in the previous section, detailed legalization can still
do a good job if the local average density is less than targeted
density. Therefore, for density overflow, we only measure the
local average density overflow, i.e.max(d′j,k − dmax, 0). For
cell movement, we are interested in total cell movement and
maximum cell movement.

Fig. 9 compares the total cell movement during the diffusion
process forDIFF (G) and DIFF (L) on ckt1. We can
observe that local diffusion makes much less cell movement
than global diffusion.

Fig. 10 compares the total bin density overflow during
the diffusion process forDIFF (G) andDIFF (L) on ckt1.
We can observe the density update significantly reduces the
density overflow. Density update also helps diffusion run faster
because it reduces overflow quickly.

Tables VII and VIII compare the density overflow and
cell movement betweenDIFF (G) and DIFF (L). Both
maximum and total numbers are reported. Clearly,DIFF (L)
has much less density overflow and cell movements across the
board. The average cell movement reduction ofDIFF (L)
over DIFF (G) is 70% and the average density overflow
reduction is 58%. Note that the density overflow of both global
and local diffusions are not zero. For global diffusion, although
we check the maximum bin density as the stopping criteria,
the density it measures is not the real density as we mentioned
in section VI-A. For local diffusion, the overflow measured at
each density update point is affected by the density update
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Fig. 10. Total density overflow during diffusion on ckt1.

period NU . It does not converge nicely as global diffusion,
which always reduce the computed overflow (not the real
overflow) during the diffusion process. One might see overflow
increase a bit then continue decrease when maximum density
is close to the target density. From that point, it usually takes a
long time to converge. Therefore, for runtime reason, we stop
local diffusion whenever the overflow starts to increase, which
is a good indication of the majority of diffusion is done. This
issue is also discussed in section VII-C.

TABLE VII

DENSITY OVERFLOW COMPARISON

DIFF(G) DIFF(L)
testcases max total max total

ckt1 11.82 527.92 0.08 120.48
ckt2 11.91 2105.30 2.60 1264.42
ckt3 11.98 3738.26 2.63 660.57
ckt4 22.44 2869.68 5.14 772.24
ckt5 23.28 13415.87 4.88 9510.61
ckt6 35.74 35506.25 11.54 21089.78
ckt7 11.42 8182.58 3.77 2966.06

Improvement 78% 58%

TABLE VIII

CELL MOVEMENT COMPARISON

DIFF(G) DIFF(L)
testcases max total(106 ) max total(106)

ckt1 284.41 4.6706 148.47 0.71
ckt2 598.98 9.2568 463.45 3.7434
ckt3 536.92 5.8905 656.82 2.3571
ckt4 538.65 6.604 215.39 2.0497
ckt5 622.08 3.537 324.52 1.05
ckt6 498.4 15.129 341.6 4.8348
ckt7 349.6 11.2671 550.56 2.2869

Improvement 19% 70%

C. Parameter Characterization

In this section, we show the performance tradeoff of differ-
ent local diffusion parameters, including bin sizeB, window
sizeW1 andW2, and density updating periodNU .

Fig. 11 plots the total movements and worst negative slack
(WNS) result of legalization with different bin sizeB for ckt2
(the area of a bin isB2). We can observe that when bin size is
smaller than twice the height of circuit row (12), the result is
worse. This is because when bin size is smaller than the cell,
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Fig. 11. Total cell movements and worst negative slack with different bin
size (B) on ckt2.

we can no longer formulate the cell movement as molecular
movement. We can also see that when bin size is too large, the
result also degrades. This is because that the larger bin size
could produce unnecessary spreading thus make timing worse.
Therefore the sweet spot for bin size is between 20 and 40,
which is about 2 to 4 circuit row high.

Fig. 12 and Fig. 13 show the total movement and WNS
result with different local diffusion window sizeW1 andW2

(as used in Algorithm 2) forckt2. Fig. 12 assumesW1 = W2,
and Fig. 13 usesW1 = 2. We can observe that largerW1 and
W2 cause more spreading. LargerW2 makes the spreading
faster. For legalization, overspread usually means worse timing
and wire length. Therefore we choose to use the smallerW1

andW2.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 2 4 6 8 10 12 14

W1

to
ta

l m
o

ve
m

en
t

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0 2 4 6 8 10 12 14

W1

W
N

S

 

Fig. 12. Total cell movements and worst negative slack withW1 (assuming
W1 = W2) on ckt2.
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Fig. 13. Total cell movements and worst negative wlack withW2 (assuming
W1 = 2) on ckt2.

Table IX shows the total movement,TWL, WNS and
runtime results with different density updating periodNU

for ckt2. One would imagine that frequently updating the
density map could result in a better result (i.e. less movement,
better timing), however, our experiment shows this is not the
case. Longer updating periodNU results in a little better
wire length and similar or even better timing. The reason is
following: shorter update period means the density is updated
when the cells make smaller moves, therefore the overflow
reduction is also smaller. It is easier for the additional overflow
introduced by the uneven cell distribution (as explained in
section VI-B) to override the smaller overflow reduction.
Therefore the chance that cell relative order being violated
is higher. More disruption to the relative order will increase
the wire length and degrade timing. This phenomenon also

tells us that pure optimization for total cell movement does
not always optimize timing or wirelength. Furthermore, the
runtime of diffusion with shorter period is also higher because
it needs to recompute density for more iterations. Therefore,
we choose to use longer density updating periods (NU = 30)
in our legalizer.

TABLE IX

LEGALIZATION PERFORMANCE WITH DIFFERENT DENSITY UPDATING

PERIOD NU FOR ckt2

NU movement(106) TWL(106) WNS CPU(s)
1 3.337 11.575 -0.001 136.6
5 3.409 11.481 -0.002 60.7
10 3.477 11.437 -0.004 37.4
15 3.483 11.423 -0.002 36.5
20 3.826 11.331 -0.006 33.3
25 3.493 11.414 -0.005 32.3
30 3.743 11.339 0.001 34.0
40 3.684 11.341 -0.004 28.2

D. ISPD Benchmarks

Previous sections use proprietary industry circuits to eval-
uate the performance of the diffusion legalization. In this
section, we run a set of experiment on publicly available ISPD
2004 benchmark [17] [23]. First we take the 18 benchmark
circuits and place them with Capo [24]. Then we inflate
cells to create overlaps. We create two sets of overlapped
circuits: RANDOM and CENTER. The RANDOM set
randomly picks cells to inflate, while theCENTER set only
inflates cells in the center of the chip. ThereforeRANDOM
has a random overlap distribution whileCENTER has a
centralized overlap distribution. Both inflation procedures only
inflate 10% of cells. For each cell, both procedures inflate the
cell width by 60%. The resulting overlap percentages and other
design characteristics are reported in Table X.

We compare the diffusion legalization (local diffusion) with
Capo legalization (Capo) [25], FengShui 5.1 (FengShui)
[26] detailed placement and the latest computational geometry

TABLE X

TESTCASES WIRELENGTHS AND OVERLAPS

testcase objs TWL (tracks) CENTER (%) RANDOM (%)
ibm01 12506 1.805E+06 5.531 4.941
ibm02 19342 3.947E+06 7.375 5.243
ibm03 22853 5.008E+06 5.003 5.162
ibm04 27220 6.146E+06 5.529 4.746
ibm05 28146 1.002E+07 5.379 4.943
ibm06 32332 5.553E+06 6.356 5.045
ibm07 45639 9.209E+06 5.878 5.124
ibm08 51023 9.665E+06 5.692 5.236
ibm09 53110 1.043E+07 5.675 4.986
ibm10 68685 1.899E+07 5.932 5.044
ibm11 70152 1.534E+07 5.719 5.206
ibm12 70439 2.388E+07 5.1 5.078
ibm13 83709 1.834E+07 5.817 5.359
ibm14 147088 3.445E+07 5.667 5.046
ibm15 161187 4.225E+07 5.792 5.39
ibm16 182980 4.702E+07 5.821 5.326
ibm17 184752 6.730E+07 6.33 5.185
ibm18 210341 5.767E+07 5.543 5.255
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placement migration (GEM ) [18]. It is not clear to us what
legalization algorithmCapo uses, we guess they are greedy
heuristics.FengShui uses dynamic programming algorithm
[5]. GEM uses a global bin-stretching spreading algorithm
followed by detailed legalization. All experiments run on
a Linux server with 4 AMD 2.0GHz Opteron CPUs. The
wirelength, movement and runtime statistics of legalizations
for CENTER testcases are reported in Tables XI, XII and
XIII. Statistics for RANDOM testcases are reported in
Tables XIV, XV and XVI. The wirelengths are scaled to the
original wirelength before legalization. The movement reports
include maximum movement, average movement, average
square movement, and total number of cells moved. The best
result among all legalizers are highlighted in tables.

Clearly, diffusion introduces much less cell movement and
wirelength degradation, in particular forCENTER, which is
consistent with the result of Table VI. On bothCENTER
and RANDOM testcases, diffusion produces the best max-
imum movement and average square movement, whileCapo
produces best number of movements andGEM the best linear
movement. The average maximum movementsDIFF makes
are only about 20% of those made byCapo, FengShui and
GEM . OnCENTER set, the advantage of wirelength of dif-
fusion over other legalizers is clear. OnRANDOM testcases,
diffusion is as good asFenshui and slightly better thanCapo
and GEM . Note that diffusion is designed for placement
migration applications, where lots of placement changes need
to be made. Legalization forRANDOM set is not a typical
application for placement migration. Therefore diffusion does
not show much more benefit than other legalization tools on
RANDOM . However, if we have timing information for
these testcases, diffusion could have achieved the best timing
result because the maximum movement and average square
movement from diffusion are the smallest among all compared
legalizers.

The runtime of diffusion legalization is comparable toCapo
andFengshui.

One could argue that the legalization engines of Capo and
FengShui were not designed to handle overly congested over-
laps likeCENTER testcases. There are not many legalization
algorithms proposed to handle placement migration problems
as we defined in the introduction section. To the best of our
knowledge, only the recently proposed computation geometry
migration algorithm [18] does similar spreading as diffusion.

Diffusion still gives better results thanGEM on both
CENTER andRANDOM sets although the gap is smaller
than those toCapo and FengShui. For example,DIFF
achieved an average total wirelength of1.08 on CENTER
compared to1.15 by GEM . And the maximum movement
and average square movement ofDIFF are also smaller. The
biggest advantage ofGEM is its speed. Among these four
legalizers,GEM runs fastest. SinceGEM is not the focus of
this paper, here we only give a brief analysis of whyGEM is
much faster than diffusion. The main reason is that diffusion
needs to use smaller time stamp thanGEM to make the
computation stable. Diffusion algorithm solves the diffusion
equation with Forward Time Centered Space (FTCS) [21]. To
make it stable, we have to choose a very small time interval

TABLE XI

WIRELENGTH AFTER LEGALIZATIONS ON CENTER TESTCASES

(SCALED TO ORIGINAL WIRELENGTH)

testcase Capo FengShui DIFF(L) GEM
ibm01 1.30 1.22 1.10 1.17
ibm02 1.29 1.28 1.08 1.14
ibm03 1.26 1.16 1.07 1.15
ibm04 1.19 1.09 1.06 1.08
ibm05 1.15 1.11 1.05 1.12
ibm06 1.31 1.30 1.09 1.14
ibm07 1.28 1.21 1.08 1.10
ibm08 1.26 1.14 1.08 1.11
ibm09 1.32 1.28 1.09 1.14
ibm10 1.21 1.18 1.08 1.17
ibm11 1.28 1.24 1.08 1.12
ibm12 1.19 1.12 1.06 1.09
ibm13 1.44 1.26 1.09 1.22
ibm14 1.35 1.22 1.08 1.11
ibm15 1.49 1.30 1.11 1.21
ibm16 1.45 1.32 1.10 1.29
ibm17 1.44 1.29 1.08 1.19
ibm18 1.38 1.29 1.09 1.14

Average 1.31 1.22 1.08 1.15
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Fig. 14. Placement ofibm01.

such that the stability condition|v|∆t
∆x ≤ 1 is satisfied. There-

fore it requires more iterations. Second, diffusion uses a much
smaller grid size thanGEM in our implementations, which
means there are more grids to compute but better accuracy of
spreading. Last but not least important, as implemented in an
existing industry placement tool, diffusion has more runtime
overhead than a brand new academic legalizerGEM .

To further reveal the difference of these legalizers, we
plot the movement pictures during legalization foribm01
CENTER, which are shown in Figs. 15 - 18. The original
placement picture ofibm01 is shown in Fig. 14. To make cell
movement easy to visualize, we only show the movements
over 50 tracks in these figures. The arrows illustrate cell
movements during legalization. We can observe that diffusion
smoothly moves cells out of the center overlapping region,
while Capo andFengShui both make large moves that would
change the cell relative order completely. We can observe that
GEM makes similar movement as diffusion: both move cells
gradually from center to the low-right corners. This is because
GEM also uses the density gradient to guide bin stretching,
which is similar to diffusion using density gradient to guide
cell movement. Note that Fig. 18 also shows some movements
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TABLE XII

MOVEMENTS OFLEGALIZATION ON CENTER TESTCASES

testcase Capo FengShui DIFF(L) GEM
max avg avg2 #mov max avg avg2 #mov max avg avg2 #mov max avg avg2 #mov

ibm01 1043 51 12005 11498 1558 84 31985 12183 245 48 3492 12428 608 50 3959 12482
ibm02 1204 62 16442 17537 1626 134 54221 18745 289 56 5389 18975 1198 58 6499 18646
ibm03 906 52 7796 18141 816 92 22188 21722 182 48 3323 22305 1042 49 4861 22568
ibm04 1231 97 22572 18876 480 78 12902 25337 205 53 4218 24453 717 51 4389 25220
ibm05 1449 76 22071 23609 1019 98 28397 26529 306 64 6322 28026 1473 65 11231 28029
ibm06 1261 101 23577 26299 1725 110 32195 31038 256 60 5470 32185 900 58 5959 32089
ibm07 1231 108 31486 27927 1967 103 33128 41649 438 68 7821 40293 1147 60 6862 40533
ibm08 1696 93 25606 40277 1010 112 37829 45651 357 61 5605 49484 1427 58 6316 49012
ibm09 1467 99 26024 39381 2350 126 56857 50838 312 67 7076 50525 1831 63 7529 49943
ibm10 1799 122 40515 46088 1503 140 52936 63235 512 92 12036 68160 2797 92 16049 68468
ibm11 1478 148 46586 37390 2324 124 48361 66649 385 75 9034 66212 1554 73 9640 64291
ibm12 1872 146 49411 47520 1380 133 46861 66780 299 89 11049 69935 2381 82 11484 69144
ibm13 2196 126 52085 67664 1638 148 68111 81193 359 86 11270 82281 2443 82 14485 79829
ibm14 2999 160 69547 114808 3873 214 139152 137135 440 118 19676 136043 2432 98 17422 136665
ibm15 2714 162 81970 141677 4395 219 170982 157040 699 125 24230 153685 3987 102 22014 152596
ibm16 3464 187 114484 160008 2606 307 257357 168576 852 152 35502 182707 4420 110 41019 176756
ibm17 3701 235 150333 149376 2414 325 286307 171093 1112 157 38187 174864 4101 122 42401 171494
ibm18 3294 193 102511 152276 2871 244 200385 188118 576 126 23814 190913 2982 115 30926 184771

Average 1945 123 49723 63353 1975 155 87786 76306 435 86 12973 77971 2080 77 14614 76808

TABLE XV

MOVEMENTS OFLEGALIZATION ON RANDOM TESTCASES

testcase Capo FengShui DIFF(L) GEM
max avg avg2 #mov max avg avg2 #mov max avg avg2 #mov max avg avg2 #mov

ibm01 966 17 927 11483 1345 28 3759 12201 226 26 1219 12289 477 24 1263 12155
ibm02 1187 21 1963 18021 547 30 3169 18893 210 32 1824 19083 340 23 1051 18816
ibm03 732 25 1691 21032 446 36 2609 22537 232 25 1216 22531 1261 22 3452 21690
ibm04 368 19 906 24042 265 24 1043 26303 184 19 639 26554 783 19 749 25774
ibm05 1584 20 1969 26812 689 25 2396 27513 332 33 2373 27688 2663 25 11307 27039
ibm06 672 20 1281 30447 287 25 1137 31680 147 29 1193 31989 824 22 1013 31570
ibm07 1412 22 2109 40840 1442 25 2249 44475 292 37 2009 45135 1467 20 1264 43254
ibm08 963 15 538 44716 252 19 653 48932 222 25 1080 49788 1394 14 1009 47831
ibm09 1094 24 1713 47663 1528 33 4060 51853 237 31 1605 52396 799 22 958 51672
ibm10 3333 28 1896 63758 601 38 2587 67233 289 29 1674 67693 3318 26 5566 67024
ibm11 2135 35 8157 65392 2271 52 23278 69198 308 38 2476 69448 1589 28 1613 69590
ibm12 1346 35 4875 66249 1041 36 6104 69399 383 51 3618 70226 2557 27 3154 68259
ibm13 2358 33 6944 78284 1271 49 9880 82614 321 43 2776 83030 2857 24 5892 80796
ibm14 986 22 1088 131484 350 23 1013 142901 391 48 3494 146017 1573 19 976 142468
ibm15 2530 39 7980 155340 2998 48 17976 159200 563 78 8922 160686 3616 31 4701 158719
ibm16 4121 43 16338 177418 1868 51 16563 181148 714 83 10253 182516 5026 33 21696 178098
ibm17 1541 33 4321 171166 872 38 5710 181276 666 62 6312 183338 3851 26 4308 180395
ibm18 4390 27 1906 193880 1129 29 2775 205753 439 29 1640 207380 1644 19 1067 203793

Average 1762 27 3700 76002 1067 34 5942 80173 342 40 3018 80988 2002 24 3947 79386

TABLE XIII

CPU TIME (S) OF LEGALIZATION ON CENTER TESTCASES

testcase Capo FengShui DIFF(L) GEM
ibm01 5 9 8 4
ibm02 9 19 17 4
ibm03 8 20 15 3
ibm04 9 24 15 3
ibm05 29 29 34 7
ibm06 11 34 39 6
ibm07 34 52 46 9
ibm08 53 67 57 13
ibm09 66 65 64 14
ibm10 105 90 80 25
ibm11 52 93 87 21
ibm12 185 97 137 20
ibm13 152 125 279 41
ibm14 387 277 488 68
ibm15 747 339 855 82
ibm16 947 389 1453 104
ibm17 1149 401 1297 105
ibm18 664 482 435 113

Average 256 145 300 36

outside the main flow area, which Fig. 15 does not have. These
movements are introduced by the detailed legalization because
there are still minor density overflow in those areas even after
the main global bin stretching phase.

VIII. C ONCLUSIONS

The incremental nature of design optimization demands
smooth placement migration techniques. They must be capable
of spreading cells to satisfy design constraints such as image
space, routing congestion, signal integrity and heat distrib-
ution, while keeping the original relative order. To address
these tasks, we proposed a diffusion-based placement method.
This method takes advantages of smooth movement of the
diffusion model. Our experimental results have demonstrated
significant improvements on timing and wire length over
conventional methods. The future works include applying
diffusion technique to other design closure objectives, such
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Fig. 15. Cell movement (over 50 tracks) during diffusion legalization on
ibm01 with CENTER overlap.
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Fig. 16. Cell movement (over 50 tracks) during Capo legalization onibm01
with CENTER overlap.

as routing congestion mitigation and power ground noise
reduction.
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TABLE XIV

WIRELENGTH AFTER LEGALIZATIONS ON RANDOM TESTCASES

(SCALED TO ORIGINAL WIRELENGTH)

testcase Capo FengShui DIFF(L) GEM
ibm01 1.11 1.10 1.09 1.12
ibm02 1.08 1.06 1.06 1.06
ibm03 1.11 1.07 1.06 1.13
ibm04 1.06 1.03 1.05 1.05
ibm05 1.04 1.02 1.04 1.08
ibm06 1.09 1.05 1.07 1.07
ibm07 1.09 1.04 1.06 1.08
ibm08 1.05 1.02 1.06 1.06
ibm09 1.11 1.07 1.07 1.07
ibm10 1.08 1.04 1.06 1.12
ibm11 1.19 1.13 1.07 1.08
ibm12 1.09 1.03 1.05 1.08
ibm13 1.19 1.09 1.08 1.18
ibm14 1.06 1.02 1.06 1.06
ibm15 1.16 1.10 1.10 1.12
ibm16 1.15 1.07 1.09 1.26
ibm17 1.08 1.04 1.05 1.07
ibm18 1.09 1.03 1.07 1.06

Average 1.10 1.06 1.07 1.10

TABLE XVI

CPU TIME (S) OF LEGALIZATION ON RANDOM TESTCASES

testcase Capo FengShui DIFF(L) GEM
ibm01 1 9 8 2
ibm02 4 18 10 2
ibm03 2 20 14 3
ibm04 1 24 14 2
ibm05 8 30 35 6
ibm06 4 34 40 4
ibm07 8 51 48 5
ibm08 5 67 59 7
ibm09 14 63 52 9
ibm10 27 89 53 19
ibm11 26 93 84 14
ibm12 54 93 315 15
ibm13 118 124 265 36
ibm14 24 267 509 25
ibm15 114 327 640 80
ibm16 533 373 880 99
ibm17 226 375 607 60
ibm18 104 460 256 43

Average 71 140 216 24

[25] “Capo tool suite,”http://vlsicad.eecs.umich.edu/BK/PlaceUtils/.
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