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ABSTRACT
In this paper, we propose TROY, the first track router with
yield-driven wire planning to optimize yield loss due to ran-
dom defects. As the probability of failure (POF ) com-
puted from critical area analysis and defect size distribu-
tion strongly depends on wire ordering, sizing, and spacing,
track routing plays a key role in effective wire planning for
yield optimization. TROY formulates wire ordering into a
preference-aware minimum Hamiltonian path problem. For
simultaneous wire sizing and spacing optimization, TROY
solves it optimally by formulating the problems into a sec-
ond order conic programming (SOCP). Experimental results
show that TROY can reduce the random-defect yield loss by
18% on average without any overhead in wirelength, com-
pared with the widely used greedy approach.
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General Terms
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1. INTRODUCTION
Smaller feature size makes nanometer VLSI designs vulnerable

to ever-growing yield loss due to both random and systematic
causes [17]. While it is believed that the yield loss due to system-
atic sources is greater than that due to random defects during
the technology and process ramp-up stage, the systematic yield
loss can be largely eliminated when the process becomes ma-
ture and systematic variations are extracted/compensated. On
the other hand, the random defects which are inherent due to
manufacturing limitations will still be there even for mature fab-
rication process [17]. Thus, its relative importance will indeed
be much bigger for mature process with systematic variations
designed in. Among random defects, the density of back-end-
of-line (BEOL) defects (i.e., interconnect defects) is increasing,
compared to that of front-end-of-line (FEOL) defects (i.e., de-
vice defects) [16]. Since the random BEOL defects mainly occur
either between physically adjacent interconnects (short defects)
or on interconnect itself (open defects), routing and interconnect
optimization should be the suitable stage for random-defect yield
optimization [4, 17,21].
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In general, routing consists of two steps, global routing and de-
tailed routing. Global routing plans an approximate path for each
net, while detailed routing finalizes the exact DRC-compatible
pin-to-pin connections. Track routing, as an intermediate step
between global and detailed routing, can expedite detailed rout-
ing by embedding major trunks from each net within a panel (a
row/column of global routing cells) in DRC-friendly manner [3].
Such track routing is an appealing stage to optimize critical area
for yield enhancement, as decent flexibility in routing optimiza-
tion exists with wire adjacency information [8,17,26], while global
routing is lack of wire adjacency information for accurate criti-
cal area estimation and detailed routing cannot provide enough
flexibility for significant yield improvement.

Due to the criticality of yield, there have been considerable
amount of efforts to enhance yield by reducing critical area in
routing or post-routing. However, there are a few drawbacks in
these prior works: (a) one single defect size is considered, rather
than a defect size distribution [18, 22], (b) the trade-off between
open and short defects due to fixed routing area is ignored [1, 2,
16,18,22], (c) localized/greedy optimization is performed, which
may be suboptimal [2,4,7,16,23], (d) wire adjacency information
is not available for accurate critical area estimation [14, 20].

In this work, we propose TROY, a track router with yield-
driven wire planning (wire ordering, sizing, and spacing) to op-
timize yield w.r.t random defects. TROY orders wires first to
minimize overlapped wirelength between adjacent wires based on
preference-aware minimum Hamiltonian path, and then performs
optimal wire sizing and spacing for the ordered wires with efficient
second order conic programming. As a result, globally optimal
wire width and spacing as well as minimal overlapped wirelength
decreases critical area, making a design robust to random defects.
The major contributions of this paper include the following.

• We propose TROY, a track router with yield-driven wire
planning. To our best knowledge, this is the first work that
yield is optimized during track routing.

• We propose a simple model of probability of failure due to
random defects. This simple, yet effective model enables
our second order conic programming.

• We show that wire ordering within a panel (the first step
of wire planning in TROY) can be efficiently solved by
preference-aware minimum Hamiltonian path. TROY con-
siders the interaction between adjacent panels to overcome
any disadvantage from isolated panel-by-panel approach.

• We show that wire sizing and spacing for an entire layer (the
second step of wire planning in TROY) can be formulated
as second order conic programming which can be solved
optimally in O(N1.3).

2. PRELIMINARIES

2.1 Notations
Table 1 shows a list of notations in this paper. Fig. 1 shows

an example of track routing where six wires from W1 to W6 are
assumed to be already routed (thus, p1 to p6 are known) within
a panel Pi which is bounded by Ti and Bi. Mi is the median
of x/y positions of all the pins in the panel where Wi exists. If
pi 6= Mi, we can use the deviation |pi−Mi| as a metric for possible
wirelength increase, because the shortest trunk-steiner tree can
be built with the median of pins [6]. Thus, pi should be as close
as possible to Mi for shorter wirelegnth and less defects.



Table 1: The notations in this paper.
Wi wire i
Mi preferred position of Wi for minimal wirelength
Li wirelength of Wi

Lij overlapped wirelength between Wi and Wj

pi x/y position of the center of Wi

ni a set of wires adjacent to Wi

lij adjacent and overlapped wirelength between Wi and Wj

wi wire width of Wi

sij spacing between Wi and Wj , |pi − pj | −
wi+wj

2
Pi the i-th panel
Ti the top position of Pi

Bi the bottom position of Pi

Wmin minimum wire width of the layer
Wmax maximum wire width of the layer
Smin minimum wire spacing of the layer

w3

w4

w5

w2

w1p1

p2

p3

p4

p5

s12

s35

0 1 2 3 4 5 6 7 8 9 n1 = {2,3}

n2 = {1,3}

n3 = {1,2,4,5,6}

n4 = {3,5}

n5 = {3,4,6}

n6 = {3,5}

L12 = 1, l12 = 1    

L24 = 3, l24 = 0   

L26 = 0, l26 = 0

L35 = 7, l35 = 2  

L56 = 3, l56 = 1

w6p6

P
i

Ti

Bi

M1

M6

M4

M3

M2

M5

M1

M6

M4

M3

M2

M5

Figure 1: An example of track routing

2.2 Critical Area and Probability of Failure
Critical area for a defect is equal to the area where the center of

the defect must fall in order to cause a circuit failure for a given
defect size distribution. Probability of failure (POF ) based on
critical area analysis with defect size distribution is a widely used
metric for yield prediction and optimization [8, 17]. The defect
size distribution F (x) is widely modelled as follows [8, 19]:

F (x) = kx−r for xmin ≤ x < ∞ (1)

where x is the defect size, xmin is the minimum resolvable litho-
graphic feature size, k is a coefficient to ensure

∫

∞

xmin
F (x) dx = 1,

and r ≈ 3 [9]. When the end effect is ignored [14], the critical
area Ao

i (x) for open defects on a wire Wi and the critical area
As

ij(x) for short defects between two parallel wires Wi and Wj

can be approximated as follows [8, 15,19]:

Ao
i (x) =







0 for 0 ≤ x < wi

Li(x − wi) for wi ≤ x < 2wi + Smin

Li(wi + Smin) for 2wi + Smin ≤ x < ∞

As
ij(x) =







0 for 0 ≤ x < sij

lij(x − sij) for sij ≤ x < 2sij + Wmin

lij(sij + Wmin) for 2sij + Wmin ≤ x < ∞
(2)

where Li, wi, lij , sij are as in Table 1. Since Ao
i (x) and As

ij(x)

cannot keep increasing, it saturates at a defect size of 2sij +Wmin

and 2wiw + Smin, respectively [19]. The probability of failure
due to open defects on Wi (POF o

i ) and due to short defects
between Wi and Wj (POF s

ij) on a given layer can be obtained as

follows [8, 19]:

POF o
i =

∫

∞

xmin
F (x)

Ao
i (x)

Achip
dx = kLi

2Achip
( wi+Smin

2w2

i
+Sminwi

)

POF s
ij =

∫

∞

xmin
F (x)

As
ij(x)

Achip
dx =

klij

2Achip
(

sij+Wmin

2s2

ij
+Wminsij

) (3)

where Achip is the total chip area. As POF o
i and POF s

ij indi-

cate the chance of having a random defect, yield can be improved
by minimizing POF o

i and POF s
ij together, which can be accom-

plished by maximizing wire width (wi) and wire spacing (sij)
respectively. However, minimizing POF o

i and POF s
ij are two

conflicting objectives, as larger wi to decrease POF o
i leads to

smaller sij which increases POF s
ij with a fixed routing area.

3. YIELDDRIVEN TRACK ROUTING
In this section, we show yield-driven track routing in math-

ematical formulation. To maximize yield, we need to minimize
POF o and POF s for all the wires in the design. At the same
time, the deviation (see Section 2.1) resulted from track rout-
ing should be taken into account as potential victim of open de-
fects. Assuming such deviation is captured by POF o∗

i , yield-
driven track routing can be formulated as in Fig. 2 where the
objective is the weighted total probability of failure, and α is a
user-defined parameter (0 ≤ α ≤ 1) to control the trade-off be-
tween open and short defects. The constraint (a) is about the
deviation of Wi from Mi (possible wirelength increase), and the
constraint (b) is to guarantee sij ≥ Smin for any adjacent wires.
The constraint (c) is to keep wires within the corresponding panel,
and the constraint (d) is to control wire width wi.

min : α
∑

i(POF o
i + POF o∗

i ) + (1 − α)
∑

i,j>i POF s
ij

s.t :(a) |pi − Mi| ≤ di ∀i

(b) Smin ≤ sij ≤ |pi − pj | −
(wi+wj)

2
∀i,∀j ∈ ni

(c) Bk + wi

2
≤ pi ≤ Tk − wi

2
∀i ∈ Pk

(c) Wmin ≤ wi ≤ Wmax ∀i

Figure 2: Yield-driven track routing formulation

The objective in Fig. 2 is non-linear, and the constraint (b)
is non-convex. In fact, this formulation has high combinatorial
complexity, as neither the order of wires is fixed nor pi is iden-
tified. We can convert the formulation in Fig. 2 into an integer
non-linear programming as in Fig. 3 by reformulating the con-
straint (b) with a binary integer variable oij , which is set to 1 if
pi > pj , otherwise 0. N is a huge constant.

min : α
∑

i(POF o
i + POF o∗

i ) + (1 − α)
∑

i,j>i POF s
ij

s.t : |pi − Mi| ≤ di ∀i

Smin ≤ sij ≤ pi − pj −
(wi+wj)

2
+ (1 − oij)N ∀i, j

Smin ≤ sij ≤ pj − pi −
(wi+wj)

2
+ oijN ∀i, j

oij ∈ {0, 1} ∀i, j

Bk + wi

2
≤ pi ≤ Tk − wi

2
∀i ∈ Pk

Wmin ≤ wi ≤ Wmax ∀i

Figure 3: Yield-driven track routing formulation in
integer non-linear programming

Optimally solving the formulation in Fig. 3 maximizes yield
w.r.t random defects in track routing. However, this formulation
is unacceptably expensive to compute even with a linearized ob-
jective function by Taylor expansion (not to mention that this
linearization can introduce significant suboptimality).

4. TROY ALGORITHM
In this section, we present our track routing algorithm, TROY

to solve the formulation in Fig. 3. The key observation we make
is that if POF o

i and POF s
ij in Eq. (3) are simplified into sim-

pler convex forms as in Eq. (4) and oij (thus, ni as well) is
known, wire sizing and spacing which significantly impact immu-
nity to random defects can be optimally solved by second order
conic programming (SOCP). ,which provides a global optimal so-
lution as efficiently as linear programming. The model in Eq. (3)
shows over 99% regression coefficient for a wide range of wire
width/spacing.

POF o
i ≈ kLi

2Achip
(a Smin

wi
− b) (1 ≤ wi

Smin
≤ 20)

POF s
ij ≈

klij

2Achip
(a Wmin

sij
− b) (1 ≤

sij

Wmin
≤ 20) (4)

4.1 Motivation and Strategy
The wire width (wi) needs to be larger to minimize POF o

i ,
while the overlapped wirelength (lij) and wire spacing (sij) need
to be smaller and larger respectively to minimize POF s

ij . Min-

imizing POF s
ij is much harder than POF o

i , because the former
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Figure 4: TROY example

has two variables and lij depends on the order of wires (intu-
itively, optimizing POF s

ij involves two adjacent wires). Finding

the optimal order of wires (thus, oij) is NP-hard, as it can be de-
duced from minimum Hamiltonian path problem. On the top of
that, wi and sij are two conflicting objectives. Thus, minimizing
POF o

i and POF s
ij in Fig. 3 is prohibitively expensive.

Interestingly, we discover that POF o
i can be translated into a

rotated conic constraint [13], and due to the similarity between
POF o

i and POF s
ij , POF s

ij can be also translated into a rotated

conic constraint, if lij is known. This translation enables fast

SOCP which can find globally optimal wi and sij with O(N1.3)
bound where N is the number of variables [5]. This observation
motivates our two step wire planning for TROY as follows:

1. Wire Ordering: The goal of wire ordering is to compute
oij (thus lij). In TROY, wire ordering is done in each
panel such that total overlapped wirelength between adja-
cent wires is minimized by finding preference-aware mini-
mum Hamiltonian path. This is discussed in Section 4.2.

2. Wire Sizing and Spacing: The goal of wire sizing and
spacing is to tune wire width and spacing such that the
maximum immunity to random defects, thus maximum yield
can be achieved. As wire sizing and spacing are conflicting
objectives due to fixed routing area, the optimal trade-off
is found by second order conic programming. This is dis-
cussed in Section 4.3.

4.2 Wire Ordering Optimization
The goal of wire ordering is to find an order of wires such

that the overlapped wirelength (lij) between adjacent wires is
minimized. Although the critical area is not explicitly targeted,
shorter overlapped wirelegnth will effectively reduce POF s. We
first identify a set of disjoint sub-panels within each panel such
that there is no shared wire between any two identified sub-panels.
Then, wire ordering is performed from the lowest panel to the
highest panel for each sub-panel in each panel.

Wire ordering for each sub-panel to minimize total overlapped
wirelength can be achieved by well-known minimum Hamiltonian
path (MHP) [22, 26]. Consider the example in Fig. 4 where six
wires (W1 ∼ W6) are to be routed within a sub-panel of a panel
Pi for maximum yield. Fig. 4 (a) illustrates the problem in this
example. First, assuming minimum wire width and spacing, a
feasible track routing needs to be found through interval pack-
ing [10]. Then, a clique as in Fig. 4 (d) can be constructed by
regarding each row as a vertex, and edge weight Eij between two
rows (thus, two vertices), Vi and Vj can be computed as follows:

Eij =
∑

Wi∈Vi,Wj∈Vj
Lij (5)

Since finding MHP from the clique is well-studied, we skip the
details. From the MHP, a routing solution like Fig. 4 (c) can
be found. However, naive MHP approach has two drawbacks
regarding yield, which we further address in TROY.

• The possible wirelength increase due to deviation from the
median (See Section 2.1) is not considered, which in turn
increases the density of random defects.

• The interaction between adjacent panels is ignored. As
short defects can occur on the boundary of adjacent panels,
it is required to take this into account.

We observe that there can be multiple optimal MHP solutions,
as the distribution of edge weights are rather narrow. Thus,
we need to find the minimum deviation solution estimated by
∑

i |pi − Mi| among all the optimal MHP solutions. We call our
modified MHP as preference-aware minimum Hamiltonian path
(pMHP). For example, although both Fig. 4 (c) and (e) are the
MHP of Fig. 4 (d) (the same overlapped wirelength), one can
recognize that Fig. 4 (e) shows less deviation from the preferred
positions (

∑

i |pi −Mi|), which can result in less random defects.
We further improve our wire ordering by considering the con-

tour of adjacent panel. Consider the example in Fig. 4 (f) where
Wc are the wires from a panel Pk−1, assuming the wires in Pk−1

are already ordered. Fig. 4 (f) shows a better wire ordering than
Fig. 4 (e), when the interaction between Pk and Pk−1 is consid-
ered. This can be done with a new clique in Fig. 4 (h) where Wc

is added and set as a starting vertex, and the bold lines indicate
the pMHP. The edge weight between Wc and other vertices can
be computed with Eq. (5) as well.

4.3 Globally Optimal Wire Sizing and Spacing
After wires in every panel on a layer are ordered, the formula-

tion in Fig. 3 can be further deduced into the formulation in Fig. 5
after plugging in Eq. (4), filling all the integer variables (oij) with
the corresponding values, and eliminating constant terms from
the objective. Auxiliary variable γij and δij are introduced to
translate the non-linear objective into rotated conic constraints
which enable second order conic programming (SOCP) [13]. Due
to the space limitation, we omit the derivation details. The formu-
lation in Fig. 5 can be solved optimally and efficiently by interior-
point method with O(N1.3) bound where N is the number of
variables [5, 13], thus the solution will provide the optimal wire
width and position (thus, spacing) for maximum yield. The opti-
mal wire sizing and spacing for an entire layer by SOCP can find
the optimal trade-off between open defects and short defects in

min : α
∑

i{δi + (1 − b
a
)di} + (1 − α)

∑

i,j γij

s.t : |pi − Mi| ≤ di ∀i

Smin ≤ sij = pi − pj −
wi+wj

2
∀oij = 1, ∀j ∈ ni

lijWmin ≤ sijγij ∀i,∀j ∈ ni

LiSmin ≤ wiδi ∀i

Bk + wi

2
≤ pi ≤ Tk − wi

2
∀i ∈ Pk

Wmin ≤ wi ≤ Wmax ∀i

Figure 5: Yield-driven track routing in SOCP



Table 2: Comparison between greedy track router and TROY (α = 0.6).
circuit Greedy (discrete wire width) TROY (discrete wire width) TROY (continuous wire width)

name grid wires wlen wlen inca yield loss cpu wlen inc yield loss cpu wlen inc yield loss cpu
(µm) (µm) open short sum (sec) (µm) open short sum (sec) (µm) open short sum (sec)

ibm01 64x64 35K 135172 19606.6 527 521 1048 1 19119.7 561 320 881 13 19119.7 547 310 857 13
ibm02 80x64 68K 1049388 97720.2 660 513 1173 1 94747.6 511 445 956 90 94747.6 539 407 946 90
ibm03 80x64 56K 899694 69128.0 666 457 1123 1 68808.3 519 447 966 50 68808.3 532 396 928 51
ibm04 96x64 73K 714612 86668.5 692 527 1219 1 88547.1 618 399 1017 50 88547.1 612 379 991 50
ibm05 128x64 110K 4917756 290296.0 568 406 974 2 292148.4 389 293 682 217 292148.4 391 278 669 218
ibm06 128x64 112K 1693308 139420.2 776 507 1283 2 139782.8 671 491 1162 87 139782.8 679 463 1142 86
ibm07 192x64 141K 2652531 224507.6 587 453 1040 4 221714.3 459 351 810 131 221714.2 461 328 789 136
ibm08 192x64 160K 2456022 201960.8 691 481 1172 4 205223.8 562 425 987 117 205223.8 582 393 975 116
ibm09 256x64 156K 2094085 168111.3 681 539 1220 5 169543.3 551 423 974 110 169543.2 553 408 961 108
ibm10 256x64 216K 4701936 344649.2 599 456 1055 7 344612.4 441 376 817 214 344612.4 447 344 791 219

total 1642068.3 6447 4860 11307 27 1644247.8 5282 3970 9252 1079 1644247.5 5343 3706 9049 1087
norm. 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.82 0.82 39.96 1.00 0.83 0.76 0.80 40.3

a wirelength increase (the summation of the deviation of each wire from its preferred location).

terms of yield. Thus, TROY is much superior to traditional local
or iterative approaches. Fig. 4 (g) shows a track routing solution
after wire sizing and spacing are done by SOCP.

5. EXPERIMENTAL RESULTS
We implement TROY in C++. The initial global routing re-

sults are generated from the publicly available BoxRouter bi-
nary [12]. All the experiments are performed on a 3.0 GHz Pen-
tium machine with 1GB RAM. A solver in [11] is properly modi-
fied to find preference-aware minimum Hamiltonian path for wire
ordering in Section 4.2, and MOSEK 4.0 [13] is used to solve
second order conic programming for wire sizing and spacing in
Section 4.3. We assume 0.13µm technology to use the defect size
distribution parameter in [8], and set Smin=Wmin=0.2µm. We
further assume that Wmax=0.4µm, and 0.2, 0.3 and 0.4µm are
only allowed wire widths. The first set of columns in Table 2
shows the detail for each benchmark. Since the benchmarks are
lack of detailed pin locations, 1-5 pins for each global routing cell
on each wire are randomly generated, to define the preferred po-
sition of each wire (Mi). For comparison, we implement a greedy
algorithm similar to [24], the only track routing algorithm which
can handle arbitrary wire spacing to our best knowledge. As the
original algorithm in [24] optimizes crosstalk and timing without
wire sizing, we modify the optimization objective and add wire
sizing function for greedy minimization of POF s. Monte-Carlo
simulation [25] with 10K random defects based on Eq. (1) is per-
formed to estimate yield loss.

Table 2 shows the comparison between the greedy yield-driven
track router similar to [24] and TROY with α = 0.6 (one in con-
tinuous wire width and the other one in discrete wire width). It
clearly shows that TROY in discrete wire width can significantly
reduces yield loss by 18% on average, and it can be even over 30%
for ibm05, compared with the greedy approach in discrete wire
width. The discrete wire width incurs only 2.2% more yield loss
on average, when TROY in discrete wire width and continuous
wire width are compared.

6. CONCLUSION
In order to cope with yield loss due to random defects in the

advance technology, we present TROY, an efficient track router
with yield-driven wire planning. With effective wire ordering and
wire sizing/spacing optimization, experimental results show that
TROY reduces yield loss significantly.
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