10. Example Program, Debugging
(Chapters 5, 6.1, 6.2) October 3, 2018

e Review: LC3 data path and control state machine
« Steps during instruction execution

e Example programs

e LC3 Tools (Edit, Simulate)

Introduction to debugging

Biofie : Bage +SEXT[otE21g
PC4018 : PC + SEXT{ot215]
PC4ofii1 1 PC +SEXT[otiet! 1]

NOTES|

I
S g -
g k3 9 T ®
2 I 'Y ——
F Py x5 .3 °
§ « ;’YD s
[=]
£ :
¥ ¥
N -4
T Te) | 8 Y,
g | E§
I se L
= zE =)
2 3
= &
k 3
y =
v
z 88| ¢
& 3 S
r.ﬁ =
o

FETCH

(5e2 AguraC.7)

DRe-PCroffo \'*
=toc

=atCC
et CC

DR<-SA1+0P2*

DR<-SA180P2"

DR<-NOT(SRY |
MAR<-ZEXTIRF:0]

To 18"
To 18’

Y b \s
e e e

50 SHEETS

22-142 100 SHEETS
22.144 200 SHEETS

22141

®

i

oI

ALTERS SEQUENCE of JNSTRICTjoNS

FomP — LNcoND TIENAL

BAANCY — conNDITIONA L

TN A fescerh, B

conTReL (RsSTRuCT|oNS
__”/—’/7

-
SN

=> epkNGES fC

[c3 : cordTiow coDE REGISTERS O_ﬁﬁ)

seT BY ANY |NSTR, wHicH WETES

A NALVE [NTo A LEGISTEE
» 5 3 LDT, LEA
(A'pp/ ARy NOT, LR, LY LDT,)

Al NEQA"T']I\IE

72 - 2Z2CEko

P - posITINE
' ST TAY T

Ry thxen of W oT

SN USHIAT IS STECHEIED

DEPENIING
; Wy e =\ e MR @LF;D>
G >*—' BEN K ‘ !

ﬂ i C’D(’D’ODAI\ { A\ » f% ,\ v/""j
\ /_,,,\,__L ——————————
INSTROCTIOA

AT IS THE RKooeoo
=z Novp (‘uo chRF\T(ON)

BR .. ~
GateMARMUX GatePC
16
MARMUX LD.PC PC
R 2 - DR—Z REG
PCMUX FILE
LD.REG —b]
£ ie " SR2 SR1
3 3
ZEXT SR2—4> quT ouT [<F~SR1
(7ol 16 16
ADDR2MUX ADDR1MUX
16
[10:0]
SEXT
[8:0]
Som SR2MUX
[5:0] e o 0 e
SEXT
CONTROL 2 B AL A
ALUK
R
R LDIR. N[z|P]e—LD.cC @
16 LOGIC
GateALU
16
GateMDR

MDR LD.MDR| [MAR LD.MAR

MIO.EN

NOTES

Broi# : Base + SEXT[olEe1g
PC+oMt9 : PC + SEXT{ofiea1s]

FCHofi1 1 :PC + SEXTlofiset! 1]
"OP2 may be 5R2or SEXT]ImMS]

(See Figure C7)
MAR<-B+offé
MDR<-SA

18

IR<-MDR

BEN<-IR[11]& N + IR[10] 8 Z + IA[S] & P
[RQS:12])

AD,

I = = <
A s |28 |28 |58| |5 LB 88
4 e 78 ?E TE IV |2 L
z) (& 5 g g -
T R B
(CoNTRL’*L)
TRAP
15 14 13 12 11 10 ¢ 8 7 6 &5 14 3 2 1 0
TRAP [1 1 1 1/0 0 0 0] trapvects |

1e

MMAR]<-MDR

DRe-tDR Y
=3t CC

Calls a service routine, identified by 8-bit “trap vector.”

vector | routine
x23 |input a character from the keyboard
x21 |output a character to the monitor
x25 | halt the program

When routine is done,
PC is set to the instruction following TRAP.

(We’ll talk about how this works later.)

"

Tot1d

To1s

GateMARMUX —/\ /\- GatePC
16
>/ MARMUX o[Pc]
+1 3 REG
16 16 . DR—Z>] ElIE
o LD.REG—>{
16
3, | SR2 SR1 | 3
SR2 SR1
ZEXT —“®| out__ourt [¥F~
ADDR2MUX ADDR1MUX
1
16 A16 A16 A16 16
[10:0] 0 B
SEXT SEXT
1801 [4:0]
g SEXT S\SR2MU.
0] AAdooo
CONTROL 2 AL A
P
IR _Je-oim E fe
@ LOGIC
- GateALU
/\— GateMDR
[VDR |« LDMDR| [MAR ki~LDMAR
<—MIOEN | RW | MIOEN TinpuT ‘_;"iau?ﬁu}"':
I | KBDR !
ADDR. CTL. I 1
<] MEMORY LoGiC : _ﬂﬁs_ﬂl: DSR |
2 Ty [N NN RSN DES—— .|
—— MEM.EN
INMUXN

Using Branch Instructions

Compute sum of 12 integers.
Numbers start at location x3100. Program

RS-
NUMBEL S S TORED
sz,%\)éﬂ (NTEGER. T2
e . Ccp \z)
P !
— K‘Sf S UM
Ri? LoaDs CIRRENT

I R) <« x 2109
Rz« O ’
R2<=\2

starts at location x3000.
ADPRESS

PoINTS To MEN. LSCAT(ON WHERE NEXT

AE APDED

\
|NTEGER (F((e i MG.L\QG‘{/

Rir < M[R]
Rz & R3+ R

RY = Ri+|
)QZZJZZ“}

Address

Instruction

Comments

LEA x 3600 H\o!oO);O) Pl g1 | RE=x3100 (fc-roﬁcser>

AND X 3 06) ololiol)ﬁoljﬁtooooo R2<0

AND XBoc2| o) 0]lel0 ©/b:] oodod| RZ<D

APD 2003|000l 0l0 plo tolles]| R212

BR x3o0t] 0000 010 000 00ol0 (] 1F 2, Goto HALT (Pets

(732{1,)(3,066_—0”0; 105 00]: 000000 Loap pwexT VALYE wTo RY

DD R2006| poo[1al] 6] 000 (00| AP To R3 (R?«*—Q%L@Q

AWX 300F| oo loo] “po) [0oco (| R)= &I+ |

Py X300B|cec | !o/o:o/o 411y Rz s Re—l

6. 3009|0000, 1) 1111111) 010 Go 70 x ooy («é@%a‘)
W1)1 oo00op jo0to || HaT

pALT, X 2004

Using “Sentinel”

Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.
Sentinel stored in x310C is -1

e

R1 % LocATIovs

Rz rsUM

G HERE g JmaBERS ARG SToe)

Rl : CORRENT [NTEG ek

RY < XK 2100

Az = ©
Ri < mem[RI]

LC-3 Simulator
stop execution,
set breakpoints

execute
instruction C Lc3 Simulator - multiply.obj =10l x|
sequences
RO x0000 O R4 x0000 O PC x3200 12800
Rl x0000 O RS x0000 O IR x0000 O
R2 x0000 O R6 x0000 O PSR x8002 -3276
. R3 x0000 0 R7 x0000 O cc oz
setjdl,splay £3x3200 0101010010100000 x5440
registers x3201 0001010010000100 x1484 ADD R2, R2, R4
and memory %3202 0001101101111111 x1B7F ADD RS, RS, #-1]|
%3203 0000011111111101 x07FD BRZP x3201
%3204 1111000000100101 xF025 TRAP HALT
%3205 0000000000000000 %0000 NOP
%3206 0000000000000000 %0000 NOP |
[multiply. obj [0instructions executed [1dle 4
H 113 H b
Program Using “Sentinel” for Loop Control
Address Instruction Comments

R1 «x3100 (PC+0xFF)

0601611111111 LEA R, OxOFF

R3¢0
0110111 AND L% (00
R4 «— M[R1]
100001000000 ;500 rr000
1000006000160 BRNx3008(0x04)
R3 «R3+R4
011011000100 5 B i
0010601100061 BUERT*{
ADD R1. R1. 0x01
R4 — MIR1]
1000010000080 00
BRI to) x3003
1111111110180 "Zp(g;_’s‘)’)x
¥ 300% ‘Ll‘]oodOOOIO@lOI HALT

Solving Problems using a Computer

Methodologies for creating computer programs
that perform a desired function.

Problem Solving
* How do we figure out what to tell the computer to do?

« Convert problem statement into algorithm,
using stepwise refinement.

» Convert algorithm into LC-3 machine instructions.
Debugging

* How do we figure out why it didn’t work?

» Examining registers and memory, setting breakpoints, etc.

LTime spent on the first can reduce time spent on the second!

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.
* both printable and non-printable (ESC, DEL, ...) characters

00 nul{10 dle|20 sp|30 O [40 @ |50 P |60 " [70 p
01 soh/11dclf21 ! |31 1|41 A (51 Q|61 a |71 q
02 stx|12dc2/22 " (32 2|42 B |52 R|62 b |72 r
03 etx{ 13 dc3|23 # (33 3|43 C|53 S |[63 c |73 s
B4 eot|14dca|24 $ |34 4|44 D |54 T |64 d |74 t
05 enq[15 nak|25 % |35 5 (45 E |55 U |65 e |75 u
06 ack|16 syn|26 & |36 6 (46 F |56 V |66 f [76 v
07 bel|17 etb|27 ' (37 7 |47 G (57 W |67 g |77 w
08 bs|18 can|28 ((38 8 |48 H |58 X [68 h |78 x
09 ht[{19 em|29) (39 9|49 I |59 Y (69 i|79 y
O0a nlflasubj2a * [3a :|4a J|5a Z|6a j|7a z
Ob vt|lbescl2b + (3b ; |4b K |[5b [[6b k|7b {
Oc npflc fs|2c , [3c < |4c L |[5¢c \[6c 1|7c |
0d crfld gs|2d - (3d ={4d M |5d] |[6d m|7d }
Oe sofle rs|2e . (3e >|4e N |5e ~|[6e n |7e ~
of si|1f us|2f / [3f ? |4f 0 |5f _ |6f o |7f del

Stepwise Refinement
Also known as systematic decomposition.

Start with problem statement:

“We wish to count the number of occurrences of a character
in a file. The character in question is to be input from
the keyboard; the result is to be displayed on the monitor.”

Decompose task into a few simpler subtasks.

Decompose each subtask into smaller subtasks,
and these into even smaller subtasks, etc....
until you get to the machine instruction level.

Problem Statement

Because problem statements are written in English,
they are sometimes ambiguous and/or incomplete.

¢ Where is “file” located? How big is it, or how do | know
when I've reached the end?

¢ How should final count be printed? A decimal number?

« If the character is a letter, should | count both
upper-case and lower-case occurrences?

How do you resolve these issues?
* Ask the person who wants the problem solved, or
¢ Make a decision and document it.

Three Basic Constructs
There are three basic ways to decompose a task:

|

Task

Sequential

Do Subtask 1 to completion,

then do Subtask 2 to completion, etc.

|

Count and print the
occurrences of a
character in a file

ﬁ

l

Get character
input from
keyboard

}

Examine file and
count the number
of characters that

Subtask 1

| Subtask 1 | | Subtask 2 |
Sequential Conditional - Iterative
Conditional

If condition is true, do Subtask 1;
else, do Subtask 2.

file char False

=input?

True

|

Test character.
If match, increment

counter. '

Count = Count + 1

:

l match

|

Print number
to the screen

}

Iterative

Do Subtask over and over,
as long as the test condition is true.

more chars
to check?

Check each element of
the file and count the
characters that match.

d

l Check next char and
count if matches.

L

Problem Solving Skills

Learn to convert problem statement
into step-by-step description of subtasks.

Code for Conditional

PC offset to
address C

Exact bits depend
on condition
being tested

Instruction

« Like a puzzle, or a “word problem” from grammar school math. True False
»What is the starting state of the system?
> . . R 2
What is the desired ending state Emask 1| ' STl 2' Subtask 1
> How do we move from one state to another?
ooogf111| by
* Recognize English words that correlate to three basic /C ‘Subtaskz
constructs: -
Unconditional branch
> “do A then do B” = sequential Next to Next Subtask D
. - Subtask Next PC offset to
> “if G, then do H” = conditional l Subtask < address D

> “for each X, do Y” = iterative
»“do Z until W” = iterative

Assuming all addresses are close enough that PC-relative branch can be used.

Detailed Example

Count the occurrences of a character in a file
¢ Program begins at location x3000
* Read character from keyboard
+ Load each character from a “file”
> File is a sequence of memory locations

> Starting address of file is stored in the memory location
immediately after the program

« If file character equals input character, increment counter
» End of file is indicated by a special ASCII value: EOT (x04)

> Sentinal

¢ At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)

Codé for Iteration

Exact bits depend
on condition
being tested

PC offset to
address C

Instruction

False

True B
m :> i

o000 [111] A |

Next
Subtask

Next
Subtask

Unconditional branch
to retest condition

PC offset to
address A

Assuming all addresses are on the same page.

Example: Counting Characters

Input a character. Then
scan a file, counting
occurrences of that
character. Finally, display
on the monitor the number
of occurrences of the
character (up to 9).

three sequential subtasks.

Initial refinement: Big task into

Refining B1

Initialize: Put initial values
into all locations that will be
needed to carry out this
task.

- Input a character.
- Set up a pointer to the first
location of the file that will
be scanned.
- Get the first character from
the file.
- Zero the register that holds
the count.

1]

w

Scan the file, location by
location, incrementing the
counter if the character
matches.

Display the count on the
monitor.

Yes Done?

B1 No

Test character. If a match,
increment counter. Get next
character.

I

Yes
Done?
No
B1
|-
B2| Test character. If matches,

increment counter.

B3[Get next character.

-

!

1

LRefining B1 into sequential subtasks. |

Refining B

B
| Yes Done?
B . .
Scan the file, location by No
location, incrementing the Bl
counter if the character Test character. If a match,
matches. increment counter. Get next
* character.
]
!
Refining B into iterative construct. |
Refining B2 and B3
Yes @
B2 No
o1 to RZ=R2+1
k2
2| Test character. If matches,
increment counter. [— -
1 B3
B3[Get next ch —
[Get nex 13 [R3=R3+1
— \ [RL=MR3]
==

Conditional (B2) and sequential (B3).
Use of LC-2 registers and instructions.

]

The Last Step: LC-3 Instructions

Use comments to separate into modules and
to document your code.

; Look at each char in
Yes _ 0001100001111100 ; is
000001OXXXXXXXXX ; if
; Check for match with
1001001001111111 ; R1
00010010011000Q1

000100100000000
000010LXXXXXXXX:

R1
no

C O e S

file.

R1 = EOT?

so, exit loop
RO.

= -char

= RO - char
match, skip incr

0001010010100001 R2 = R2 + 1
; Incr file ptn a get next char
000101101110000 R3 = R3 + 1
[Bemei —] |©0110001011000000\ , R1 = M[R3]
—-J/
[Ri=MR3]
—l Don't know
PCoffset bits until

all the code is done

Debugging
You’ve written your program and it doesn’t work.
Now what?

What do you do when you’re lost in a city?
X Drive around randomly and hope you find it?
v'Return to a known point and look at a map?

In debugging, the equivalent to looking at a map
is tracing your program.
» Examine the sequence of instructions being executed.
* Keep track of results being produced.
» Compare result from each instruction to the expected result.

