10. Example Program, Debugging
(Chapters 5, 6.1, 6.2) October 3, 2018

 Review: LC3 data path and control state machine
o Steps during instruction execution

o Example programs
e LC3 Tools (Edit, Simulate)

 Introduction to debugging

50 SHEETS

22-142 100 SHEETS
22-144 200 SHEETS

22-141

=

conTRe L STRuCT|oN S
_____________.———"/—7

-

—ee—

ALTERS SBEQUENCE of [NSTRUCTONS
:’/> cHENGES PC

FormY — O coND I TIoNAL
BRANCH — oY TIONA
(c3 2 coddTIoN coDE RES\STERS (/'6}7)

sET &Y ANY |NSTR, veRcH W EATES

A NALVSE (NTO A REGISHE K

' 3 - DT, LEA
(A'pp} ISSIENNERY Lok, LD ERRS)

N — NEGRTVIVE

| = P T TAYEw
Ro1s ThYeEN, o6~ \

T4 Ok fRSGceRM B
| SHAET 15 STECFIED

PEPENDING OP

pEN (8F ?M%ﬁg

_,—-—j?

¢ deEsET

wﬁ%&T (s THE A DO OO TN S TROCTT IOAY

= Noy (ouo' DVE@@\T(QI\D

glOL

[PuunlLy3s 1oy s &q fBW 240,

[nemuelixas+od: | e+od
[sleaclinas + od : o+
Bleaell X35 + 2988 | allo+a

S3LON

glol

o0 Es
HAW->Ha

L=
H H
—
Al —=Haw

mmh____.__ lvmdﬁu

mmn_ Elv,n_.q.__.__u

e a

= F)
gHo+g—>H v

I —

Elvm_ﬂu@

4_

@éinéﬁ%
=

t

@EO& —-#H S_...u

 HYIAlIA-=HAW

o)

L

al

g1

2dO+LHS—=HA

[([Zr:gduil
d = BHI +Z% DUY + N g lLH-I-=N33

(t'>anby sex)
gl

(£2 anbig aeR)

2l

HAW-=HI

Lnil
HOd-=Dd
Dd-= HylA

<17L3 SR1

A« MIO.EN

GateMARMUX —/\ GatePC
16
>/ MARMUX LD.PC PC ,
] 7
/46 /46 5 1 DR 743 > REG
5/ PCMUX \ FILE
W LD.REG —>
A6 | K A6
3. | SR2 SR
@E SR2—4> oUT OUT
i
A17:0] /N ./ P
’ Aie Ais
FaY
A
ADDR2MUX ADDR1MUX
2 /
A i Y T e
16 fis file fie Als
[10:0] 0 P
! SEXT SEXT A
[4:0]
[8:0]
. = :;SREMUX7
el A
. SEXT |———
CONTROL = B V A
ALU
f f I W ALUK
R Y/
R .\ DIR N|Z|P[<—LD.cC Aie
16 LOGIC
; GateALU
16
/ \— GateMDR
< LD.MDR| | MAR LD.MAR

ADDR. CTL.
R < MEMORY LOGIC
2
MEM.EN ——

s

INMUX

[Fuwlixas iezys oq fBw 240,

[Luemuellyas+od: | e+
[sleaielixas + od | g+
Blreawlixas + 2988 © go+g

S310N

o+3—-=Hv N

HeEsEg-=04
o H H Y

mWE_aEEIvE@ [Hwallw—=Haw

*_

1
Glo+2d—=H S._._‘u GHO+Dd |vm.q.=.1__u
L ol

[Hy Wl W-=Haw

Qoﬁ_mﬁxmmuvm%u
L1 BloL

oD e

WdOFIHS-*HA
BlLQL

ZdO+HIHS—HA

(t-oaunby ses)
goL

[([zLsduil
d® [BH +Z % [odd + NS [LLYI-=Na3g

HAW-=HI

(3 =unbld aes)

LLwi
L+Dd-=0d

Dd—= HYlA
2l

GateMARMUX —/\

GatePC

16

>/ MARMUX LD'PC‘DE’[ZI ,
4 \
AMe Ao , + DR—Zt> REG
7417/ PCMUX\ FILE
, £ kT | |LDREG—]
/116 /46 /16
3, | SR2 SR1
5] SR2—“> ouT OUT
A
A17:0] I a d
’ /[16 /[16
A\
A
ADDR2MUX ADDR1MUX
: [%
y Y /{6
16 /46 /46 %6 /16
[1020] 0 16
4 SEXT SEXT 7=
[4:0] .
[8:0]
. _— \SR2MUX/
[5:0] R i je y
4> SEXT]
CONTROL #é\lv A
_ ALU
¥ Frrg ALUK
R “
= P N[z[Ple—LD.cc e
{6 LOGIC
i GateALU
16
/\— GateMDR

< LD.MDR
‘ MIO.EN

MAR —LD.MAR

Y

R<4 M

EMORY

MEM.EN

T

ADDR. CTL.

LOGIC

4_

2

INMU X

<§’LSR1

¢ onTRA,
TRAP ()

15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0

TRAP |1 11 1/0 000 trapvect8

Calls a service routine, identified by 8-bit “trap vector.”

vector | routine

x23 |input a character from the keyboard

x21 |output a character to the monitor

x25 | halt the program

When routine is done,
PC is set to the instruction following TRAP.
(We’ll talk about how this works later.)

Using Branch Instructions
Compute sum of 12 integers.

IS
—

ATPRESS
Ry FPornTd To MEM. Lo CAT(ON WHE RE NEXT
NUMGER 5 S TORED

@Néx‘-f {‘NTEG»Q}Q T BF /&37_3)@

Q CoJP \7/)

A
L R SUM
Ri? LoADs oORRENT

: A
(NTES E& <F§<o i\ M@L\M\jf/

~

-

Rl « x 2100 {I
Rz« O /
R2< |2

Rl < MER}J
R2 e R2+ KL
RY e RI+|
Rz=Fk2-)

Address Instruction Comments
LEA x 2600 (1 Ho! od)- o)1 1 ()| | RE<x31D0 (WC-('OFF'SGT>
AND X % 06) ow[;m)iouiwaooo Rz<0
AND XBoo2|o L O]lel(o]0 Oooo0 R2<o
4P X 2003|000l 0l0-plotolles| RZL12
BR X Booy MOO! Clo eop OoolD || 1F z/' GoTo HALT (Pets)
LDR X 5085 —’”@”5;“7(55: DO|. ©00000| LoaAy NEXT VALUE WTo RU
ByD R3006| oo (lal] 6)) cov [ov| AYD To R3S (’;Q%Q;m@
AWK 300 oo | loo] - pol.foocol| Rie El+|
Pop X 3000 | 020 | !()/OID/@I[J11))| Rz 45 Rz—l
J%é’\xzeo"‘i aooo; Vi) 21 1))el Dl Go Tox Boos @4, o@%gﬂ

PALT, X Z00H

WV)1 oo 0on j0 010 |

HA LT

LC-3 Simulator

stop execution,
set breakpoints

execute
Instruction C LC3 Simulator - multiph‘r obj o IDI_X_]
Illlll =P l Jump to: IHSEDD vl
4 RO x0000 O R4 x0000 O PC x3200 12800
RL x0000 O R5 x0000 O IR x0000 O
R2 x0000 O R6 x0000 O PSR x38002 -3276
_ R3 x0000 O R7 x0000 O GC &
set/display o
registers < x3201 0001010010000100 x1484 ADD RZ, R2, R4
and memory %3202 0001101101111111 x1B7F ADD RS, RS, #-1 I
x¥3203 0000011111111101 x07FD BRZP %3201
%3204 1111000000100101 xF0O25 TRAP HALT
%3205 0000000000000000 x0000 NOP
\. |~ x3206 0000000000000000 %0000 NOP d|
[multiply.obj |0 instructions executed [1dle 4

Using “Sentinel”

—————e e

Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

Sentinel stored in x310C is -1

PR
e

Rl LocATiovs WIHERE JJmeees ARG STo o)
R3 rSUM

4
Rl o cORRENT | NTE G CF

L3< r32Y%Y
Q&e@l%) _
Ry < M@M[@J/’S

I ¥

AT |

Program Using “Sentinel” for Loop Control

Address Instruction Comments

R1 « x3100 (PC+0xFF)

x3000 001011111111 LEA R1, OxOFF
R3 ¢« 0

x3001 0110111800080 s prs oxo0
R4 « MJR1]

x3002 1000010000080 ,,rr r 00

x3003 1000000001006 BRn x3008 (0x04)

x3004 0110110001080 R3 <R3 +Rd

ADD R3, R3, R4

%3005 00106061160600061 R &Rl 1

ADD R1. R1. 0x01

R4 « M[R1]

x3006 1000010000080 | 0rsR1oxo0

x3007 1111111110616 BRmpEx0s

X 3008 (1] 1000d0010010] HALT

Solving Problems using a Computer

Methodologies for creating computer programs
that perform a desired function.

Problem Solving
 How do we figure out what to tell the computer to do?

. Convert problem statement into algorlthm
using stepwise refinement.

e Convert algorithm into LC-3 machine instructions.
Debugging

 How do we figure out why it didn’t work?

e Examining registers and memory, setting breakpoints, etc.

Time spent on the first can reduce time spent on the second!

Stepwise Refinement
Also known as systematic decomposition.

Start with problem statement:

“We wish to count the number of occurrences of a character
in a file. The character in question is to be input from
the keyboard; the result is to be displayed on the monitor.”

Decompose task into a few simpler subtasks.

Decompose each subtask into smaller subtasks,
and these into even smaller subtasks, etc....
until you get to the machine instruction level.

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.
* both printable and non-printable (ESC, DEL, ...) characters

00 nulj10 dlef20 sp|30 O |40 @ (50 P (60 "~ |70 p
01 soh{11dc1f21 ! |31 1|41 A |51 Q|61 a |71 q
02 stx{12dc2(22 " |32 2 (42 B (52 R|62 b |72 r
03 etx/ 13 dc3|23 # |33 3|43 C[53 S |[63 Cc |73 s
04 eot|14 dc4{24 $ (34 4 |44 D |54 T |64 d |74 t
- 05eng/15nak|25 % |35 5|45 E |55 U |65 e |75 u
06 ackl|16 syn[26 & |36 6 |46 F [56 V [66 f |76 vV
07 bel|17 etb{27 ' |37 7 |47 G |57 W |67 g |77 w
08 bs|18 can[28 (|38 8 |48 H [58 X |68 h |78 x
09 ht|19 em|{29) |39 9|49 I (59 Y [69 1|79 y
Oa nl|lasubf2a *|3a :|4a J|5a Z|6a j |7a z
Ob vt|lbesc|2b + (3b ; [4b K [5b [|6b Kk |7b {
Oc npflc fs|2c , |3c < |4c L |[5c \|6c 1 |7c |
0d cr|ld gs{2d - [3d =(4d M (5d] |6d m|7d }
Oe so|le rs|2e . |3e > |4e N |[5e "~ |6e n |[7e ~
Of si|1f us|2f / |3f ? |4f O |5f _ |6f o |7f del

Problem Statement

Because problem statements are written in English,
they are sometimes ambiguous and/or incomplete.

 Where is “file” located? How big is it, or how do | know
when I've reached the end?

 How should final count be printed? A decimal number?

» If the character is a letter, should | count both
upper-case and lower-case occurrences?

How do you resolve these issues?

* Ask the person who wants the problem solved, or
 Make a decision and document it.

Three Basic Constructs
There are three basic ways to decompose a task:

|

Subtask 1

Y

l

Task

Subtask 2

'

Sequential

Conditional --

Subtask

Iterative

Sequential

Do Subtask 1 to completion,
then do Subtask 2 to completion, etc.

|

Get character
input from
keyboard

l ,,

Count and print the Examine file and
occurrences of a q count the number
character in a file of characters that

l match

Y

Print number
to the screen

l

Conditional

If condition is true, do Subtask 1;

else, do Subtask 2.

'

Test character.
If match, increment
counter.

l

e

file char
= input?

True

A

Count=Count + 1

False

Iterative

Do Subtask over and over,
as long as the test condition is true.

l

Check each element of
the file and count the
characters that match.

l

ﬁ

more chars
to check?

Check next char and
count if matches.

Problem Solving Skills

Learn to convert problem statement
into step-by-step description of subtasks.

 Like a puzzle, or a “word problem” from grammar school math.
»What is the starting state of the system?
»What is the desired ending state?
»How do we move from one state to another?

 Recognize English words that correlate to three basic
constructs:

> “do A then do B” = sequential
> “if G, then do H” = conditional
> “for each X, do Y” = iterative
> “do Z until W” = iterative

Code for Conditional

A 4

Next
Subtask

Exact bits depend
on condition
being tested

Unconditional branch
to Next Subtask

PC offset to
address C

Subtask 1

000}’111

e

Subtask 2

Next
Subtask

Assuming all addresses are close enough that PC-relative branch can be used.

PC offset to
address D

Codé for Iteration

Exact bits depend
on condition
being tested

Unconditional branéh
to retest condition

Assuming all addresses are on the same page.

Insctio

PC offset to
address C

0000 (111

/ Next

Subtask

PC offset to
address A

Detailed Example

Count the occurrences of a character in a file
 Program begins at location x3000

Read character from keyboard

Load each character from a “file”

> File is a sequence of memory locations

» Starting address of file is stored in the memory location
immediately after the program

If file character equals input character, increment counter
End of file is indicated by a special ASCII value: EOT (x04)

» Sentinal

At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)

Example: Counting Characters

Initialize: Put initial values
into all locations that will be
needed to carry out this

(START) task.

- Input a character.

- - Set up a pointer to the first

Input a character. Then location of the file that will
scan a file, counting be scanned.

occurrences of that - Get the first character from
character. Finally, display the file.

- Zero the register that holds

on the monitor the number
the count.

of occurrences of the

character (up to 9). v

Scan the file, location by
v location, incrementing the

counter if the character
(STOP) matches.

'

Display the count on the
monitor.

Initial refinement: Big task into
three sequential subtasks.

Refining B

B .
Y
Yes
* Done?
B . .
Scan the file, location by B1 No
location, incrementing the
counter if the character Test character. If a match,
matches. increment counter. Get next
‘ character.

Refining B into iterative construct.

Refining B1

Yes
B Done?
Y
No
hic Done? B1
L —
B1 No // B2| Test character. If matches,
- -
increment countetr.
Test character. If a match,
increment counter. Get next —
character. B3| Get next character.
\
\\

Refining B1 into sequential subtasks.

Refining B2 and B3 -

ves Done? Yes @ No

- No [R2=R2+1 |
B2| Test character. If matches,
increment counter.
B3
B3| Get next character. | v
~ | R3=R3+1

Conditional (B2) and sequential (B3).
Use of LC-2 registers and instructions.

The Last Step: LC-3 Instructions

Use comments to separate into modules and

to document your code.

B3
[R3=R3+1

| R1 = M[R3] |

; Look at each char in

0001100001111100
00000LOXXXXXXXXX

; Check for match

10010010011111211
00010010011000Q1
000100100000000
000010LXXXXXXXX
0001010010100001
; Incr file pt

000101101110000
0110001011000000

a

; 1is
s AT
with
: R

R1
no
R2

= O N" N= N

R3
R1

file.

R1 = EOT?

so, exit loop
RO.

= -char

= RO - char
match, skip incr
= R2 + 1

get next char

R3 + 1
M[R3]

Don't know
PCoffset bits until
all the code is done

Debugging |
You’ve written your program and it doesn’t work.
Now what?

What do you do when you’re lost in a city?
X Drive around randomly and hope you find it?
v'Return to a known point and look at a map?

In debugging, the equivalent to looking at a map

Is tracing your program.
e Examine the sequence of instructions being executed.

» Keep track of results being produced.
e Compare result from each instruction to the expected resuilt.

