11. Problem Solving, Debugging, Examples
(Chapter 6) October 8, 2018

° Review
e Structure of programs
e Example code

e Debugging

o Example programs

Code for Conditional

Exact bits depend
on condition

PC offset to
address C
Instruction

being tested TR e '
Generate |/ |

\Condition /

B| eceo |* 2 o/ |

Subtask 1 Subtask 2 ,—> Subtask 1
00004111 | D\

o7 .

/ . Subtask 2

D
< PC offset to

Unconditional branch
to Next Subtask

A 4

Next
Subtask

l

Assuming all addresses are close enough that PC-relative branch can be used

Next
Subtask address D

SToRAGE 1S [(uwEAR

N
£y \
X
4
X

>\><><X

K
Ko
X X
KX

—

Code for Iteration

Subtask
]

Next
Subtask

PC offset to
address C

Exact bits depend
on condition
being tested

——

Unconditional branch
to retest condition

PC offset to
address A

Assuming all addresses are on the same page.

Debugging
You’ve written your program and it doesn’t work.
Now what?

What do you do when you’re lost in a city?
X Drive around randomly and hope you find it?
v'Return to a known point and look at a map?

In debugging, the equivalent to looking at a map
Is tracing your program.
 Examine the sequence of instructions being executed.
« Keep track of results being produced.
o Compare result from each instruction to the expected result.

PEBUGEING IS LIKE
— foeRNnsics
— MEDCAL DIPGNOSLS

Debugging Operations

Any debugging environment should provide means to:
1. Display values in memory and registers.

~ 2. Deposit values in memory and registers.
3. Execute instruction sequence in a program. — SinN&¢LE
4. Stop execution when desired. STERQING

Different programming levels offer different tools.
 High-level languages (C, Java, ...)
usually have source-code debugging tools. — £x. @,'.PE
 For debugging at the machine instruction level:
> simulators
> operating system “monitor” tools
> in-circuit emulators (ICE)

— plug-in hardware replacements that give
instruction-level control

Types of Errors

Syntax Errors
* You made a typing error that resulted in an illegal operation.

° Not usually an issue with machine language,
because almost any bit pattern corresponds to
some legal instruction.

* In high-level languages, these are often caught during the
translation from language to machine code.
Logic Errors

e Your program is legal, but wrong, so
the results don’t match the problem statement.

* Trace the program to see what’s really happening and
determine how to get the proper behavior.
Data Errors
* Input data is different than what you expected.
e Test the program with a wide variety of inputs.
¢ TEST fFo@ VALID jnNPOTS

Tracing the Program

Execute the program one piece at a time,
examining register and memory to see results at each step.
Single-Stepping

o Execute one instruction at a time.

» Tedious, but useful to help you verify each step of your program.
Breakpoints

e Tell the simulator to stop executing when it reaches
a specific instruction.

» Check overall results at specific points in the program.

> Lets you quickly execute sequences to get a
high-level overview of the execution behavior.

» Quickly execute sequences that your believe are correct.
Watchpoints

* Tell the simulator to stop when a register or memory location changes
or when it equals a specific value.

« Useful when you don’t know where or when a value is changed.

Example 1: Multiply

This program is supposed to multiply the two unsigned
integers in R4 and R5.

clear R2 x3200 0101010010100000
, x3201 0001010010000100
— add R4 to R2 X3202 0001101101111111
! Xx3203 0000011111111101
decrement RS Xx3204 1111000000100101
&>
Set R4 = 10, R5 =3.
Yes Run program.

< HALT > Result: R2 = 40, not 30.

Debugging the Multiply Program

PC and registers

Single-stepping

if each instruction

PC | R2 | R4 | R5 / ,

00 T 3 Breakpoint at branch (x3203)
at the beginning | X3201 ¢] W 8

x3202 10| 10 3 PC | R2 | R4 | R5

x3203 10 10 2 x3203 10 10 2

x3201 10 10 2 x3203 20 10 1

x3202 20 10 2 x3203 30 10 0

x3203 20 10 1 x3203 T 40 10 -1

x3201 20 10 1 40 10 -1

x3202 30 10 1

x3203 30 10 0 /—Should stop looping here!

x3201 30 10 0

x3202 40 10 0) .

pr— ol 10 7| Executing loop one time too many.

3208 w1 " Branch at x3203 should be based

- — — on Z bit only, not Z and P.

Example 2: Summing an Array of Numbers

This program is supposed to sum the numbers
stored in 10 locations beginning with x3100,

leaving the result in R1.

R1=0
R4 =10
R2 = x3100

R1 = R1 + M[R2]
R2=R2+1

RA=R4-1

No

Yes

(HALT)

X3000
x3001
X3002
X3003
x3004
X3005
X3006
X3007
X3008
X3009

0101001001100000
0101100100100000
0001100100101010
0010010011111100
0110011010000000
0001010010100001
0001001001000011
0001100100111111
0000001111111011
1111000000100101

Debugging the Summing Program

Running the the data below yields R1 = x0024,
but the sum should be x8135. What happened?

Address | Contents Start single-stepping program...
x3100 | x3107 c TrRL] R2 =y
x3101 X2819 x3000 =
x3102 | x0110 x3001 0
x3103 | x0310 x3002 | O 0
x3003 0 10
x3104 | x0110 x3004 0| x3107| 10
x3105 | x1110
x3106 x11B1 Should be x3100!
x3107 | x0019
%3108 | x0007 Loading contents of M[x3100], not address.
Change opcode of x3003
x3109 | x0004

from 0010 (LD) to 1110 (LEA).

Example 3: Looking for a5

This program is supposed to set
RO=1 if there’s a 5 in one of ten
memory locations, starting at x3100.

Else, it should set RO to 0.

RO=1,R1=-5R3=10
R4 = x3100, R2 = M[R4]

o7 RySRe

(~ s N°a>
= QO
¢ 5
RA=R4+1
R3 = R3-1
e R2 = M[R4]

Yes

RO =

|
o

——(HALT)

x3000
x3001
x3002
X3003
X3004
X3005
xX3006
x3007
Xx3008
X3009
X300A
X300B
x300C
X300D
X300E
X300F
x3010

0101000000100000
0001000000100001
0101001001100000
000100100111106011
0101011011100000
0001011011101010
0010100000001001
0110010100000000
0001010010000001
0000016000000101
0001100100100001
0001011011111111
0110010100000000
0000001111111010
0101000000100000
1111000000100101
0011000100000000

Debugging the Fives Program

Running the program with a 5 in location x3108
results in RO = 0, not RO = 1. What happened?

Perhaps we didn’t look at all the data?
Add Content :
il Blialied Put a breakpoint at x300D to see
x3100 9 how many times we branch back.
x3101 7
PC | RO | R2 | R3 | R4
x3102 32 x300D 1 4 9 [x3101
x3103 0) x300D 1| 32 8 | x3102
x3104 -8 x300D 1 0 7 | x3103
0 0 7 | x3103 +— Didn't branch

x3105 19 back, even
x3106 6 though R3 > 0?
%3107 13 Brar!ch uses pondition code set by |

loading R2 with M[R4], not by decrementing R3.
x3108 S Swap x300B and x300C, or remove x300C and
x3109 61 branch back to x3007.

Example 4: Finding First 1 in a Word

This program is supposed to return (in R1) the bit position
of the first 1 in a word. The address of the word is in
location x3009 (just past the end of the program). If there
are no ones, R1 should be set to -1.

R1=15
R2 = data X3000 0101001001100000

Xx3001 0001001001101111

Yes Xx3002 1010010000000110
x3003 0000100000000100

No x3004 0001001001111111
decrement R1 X3005 0001010010000010
shift R2 left one bit Xx3006 0000100000000001

x3007 0000111111111100
x3008 1111000000100101
X3009 0011000100000000

Debugging the First-One Program
Program works most of the time, but if data is zero,

it never seems to HALT.

Breakpoint at backwards branch (x3007)

PC R1 PC R1
x3007 14 x3007 4
x3007 13 x3007 3
x3007 12 x3007 2
x3007 11 x3007 1
x3007 10 x3007 0
x3007 8 x3007 -1
x3007 8 x3007 -2
x3007 7 x3007 -3
x3007 6 x3007 -4
x3007 5 x3007 =5

If no ones, then branch to HALT
never occurs!

This is called an “infinite loop.”

Must change algorithm to either

(a) check for special case (R2=0), or
(b) exit loop if R1 < 0.

