12. Assembly Language, Examples
(Chapter 7) October 10, 2018

 Assembly Language
e Opcodes, operands
e Labels, comments
o Assembler directives

SR
B

e« Example: counting 1s and 0s

« Assembly process
e First pass, symbol table
e Second pass, machine code

e Example: counting characters in a file

Human-Readable Machine Language

Computers like ones and zeros...
0001110010000110
Humans like symbols...

ADD R6,R2,R6 , increment index reg.

Assembler is a program that turns symbols into
machine instructions.
* ISA-specific:
close correspondence between symbols and instruction set
» mnemonics for opcodes
> labels foT{nemory locations
- additional operations for allocating storage and initializing data

An Assembly Language Program

f Program to multiply a number by the constant 6

.ORIG x3050 -
LD R1, SIX—=
_ LD R2, NUMBER -

_AND R3, R3, #0 ; Clear R3. It will

he i 1 ; contain the product.
; The inner loop

AGAIN ADD R3, R3, R2
AGAII

ADD R1, R1, #-1 R1 keeps track of

N =

_ BRp AGAIN ; the iteration.
f HALT
NUMBER .BLKW 1
- SIX .FILL Xx0006
' END

o L
Y KEY v orRDS 7

LC-3 Assembly Language

Each line of a program is one
e an instruction

Syntax
of the following:

e an assember directive (or pseudo-op)

————— .

e a comment

Whitespace (between symbols) and case are ignored.
Comments (beginning with “;”) are also ignored.

-

An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENT

I - i

e

optional mandatory

P

=

Opcodes and Operands
Opcodes

reserved symbols that correspond to LC-3 instructions
listed in Appendix A
>ex: ADD, AND, LD, LDR, ...

Operands

registers -- specified by Rn, where n is the register number
numbers -- indicated by # (decimal) or x (hex) or b (binary)
label -- symbelic name of memory location F%\
separated by comma
humber, order, and type correspond to instruction format
> ex: B o e

ADD R1,R1,R3

ADD R1,R1,#3

LD R6,NUMBER

BRz LOOP

SR S

Labels and Comments

Label
e placed at the beginning of the line
 assigns a symbolic name to the address corresponding to line

> ex:
LOOP ADD R1,R1,#-1

: BRp LOOP
Comment

e anything after a semicolon is a comment

* ignored by assembler

e used by humans to document/understand programs

o tips for useful comments:
> avoid restating the obvious, as “decrement R1”
> provide additional insight, as in “accumulate product in R6”
> use comments to separate pieces of program

Assembler Directives

Pseudo-operations
» do not refer to operations executed by program
e used by assembler
* look like instruction, but “opcode” starts with dot

Opcode Operand Meaning
.ORIG address starting address of program
.END end of program
. BLKW n allocate n words of storage
.FILL n allocate one word, initialize with value n
. STRINGZ |n-character allocate n+1 locations,
string initialize w/characters and null
terminator

Trap Codes

LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’t have to remember them.

Code | Equivalent | Description

HALT | TRAP X25 |Halt execution and print message to console.

IN TRAP x23 | Print prompt on console,

‘ read (and echo) one character from keybd.
Character stored in RO[7:0].

OUT | TRAP Xx21 |Write one character (in RO[7:0]) to console.

GETC |TRAP Xx20 |Read one character from keyboard.
Character stored in RO[7:0].

PUTS |TRAP x22 | Write null-terminated string to console.
Address of string is in RO.

Style Guidelines

Use the following style guidelines to improve
the readability and understandability of your programs:

1. Provide a program header, with author’s name, date, etc.,
and purpose of program.

2. Start labels, opcode, operands, and comments in same column
for each line. (Unless entire line is a comment.)

Use comments to explain what each register does.
. Give explanatory comment for most instructions.
Use meaningful symbolic nhames.
 Mixed upper and lower case for readability.
o ASCIItoBinary, InputRoutine, SaveR1
6. Provide comments between program sections.
7. Each line must fit on the page -- no wraparound or truncations.
» Long statements split in aesthetically pleasing manner.

o s

Counting the number of ones (and zeroes) in
assembly language

~—

Ri< oy coonT o€ s

@0%1@/‘ toonNT ofF Os

iNITY ALV EE R« B200

N S\ A en fo
R3 e h[s209 ;ﬁ

Assembly language program to count 1s, 0s and
find even parity bit for a word

- .ORIG
AND
LD
LD
LDR
LOOP Brz
BRp
ADD
ADD
NO ADD
BRnzp
DONE STR
STR
AND
STR
HALT

x3000
R1, R1, #0

RO, SIXTEEN
R2, NUMBER

R3, R2, #0

DONE

NO

R1, R1, #1

RO, RO, #-1
R3, R3, R3

LOOP

R1, R2, #1

RO, R2, #2

R1, R1, #1

R1, R2, #3

SIXTEEN .FILL x10

NUMBER .FILL
. END

X3200

N N E NE N N NE NE N Nw

N NE N Nu=

count of 1s (start with 0)

start with a count of 16 for 0Os

address of number to test

get number to be tested

zero, we are done counting

positive, no 1 in bit 15

negative, increment count of 1s
decrement count of 0Os

shifting number left

save count of 1s in x3201

save count of 0s in x3202
parity is the LSB of the count
save parity in x3203

Assembly Process

Convert assembly language file (.asm)
into an executable file (.obj) for the LC-3 simulator.

A]
ﬁssembly—'* 1st Pass —> 2nd Pass —>Executable
anguage ———
Program \ /
Sybal
First Pass: ~ Table

e scanh program file
e find all labels and calculate the corresponding addresses;
this is called the symbol table
Second Pass:

e convert instructions to machine language,
using information from symbol table

First Pass: Constructing the Symbol Table

1. Find the .ORIG statement,
which tells us the address of the first instruction.

e [Initialize location counter (LC), which keeps track of the
current instruction.

2. For each non-empty line in the program:
a) If line contains a label, add label and LC to symbol table.

b) Increment LC.
— NOTE: If statement is .BLKW or . STRINGZ,
increment LC by the number of words allocated.

3. Stop when .END statement is reached.

NOTE: A line that contains only a comment is considered an empty line.

Practice

Construct the symbol table for the program to multiply a
number by 6

Symbol Address
(ocR\§> (;Lc> ¥ 3050
A GAIN X- 3053
NUMB ER X BEEL

g1 M X 305K

Second Pass: Generating Machine Language

For each executable assembly language statement,
generate the corresponding machine language instruction.

 If operand is a label,
look up the address from the symbol table.

Potential problems:
e Improper number or type of arguments

>»ex: NOT R1,#7
ADD R1,R2
ADD R3,R3,NUMBER

» Immediate argument too large
>»ex: ADD R1,R2,#1023

e Address (associated with label) more than 256 from instruction
> can’t use PC-relative addressing mode

LC-3 Assembler

Using “assemble” (Unix) or LC3Edit (Windows),
generates several different output files.

ﬁ -
B This one gets
Lig?nz loaded into the
(.bin) A simulator.
Hex
Listing
(-hex) v
A A
- C::S:;gg Object
Program Assembler > (Font;e_)
(.asm) _ 00
Symbol
Table
(.sym)
Listing

File
(lst)

Object File Format

LC-3 object file contains

 Starting address (location where program must be loaded),
followed by...

e Machine instructions

Example
e Beginning of “count character” object file looks like this:

0011000000000000 <——-ORIG Xx3000
0101010010100000 < AND R2, R2, #0
0010011000010001 .| b R3, PTR
1111000000100011 _| TRap x23

Multiple Object Files

An object file is not necessarily a complete program.
o system-provided library routines
o code blocks written by multiple developers

For LC-3 simulator,
can load multiple object files into memory,
then start executing at a desired address.

e system routines, such as keyboard input, are loaded
automatically

> loaded into “system memory,” below x3000

> user code should be loaded between x3000 and xFDFF
» each object file includes a starting address
» be careful not to load overlapping object files

Linking and Loading

Loading is the process of copying an executable image
into memory.

e more sophisticated loaders are able to relocate images
to fit into available memory

e must readjust branch targets, load/store addresses

Linking is the process of resolving symbols between
independent object files.

o suppose we define a symbol in one module,
and want to use it in another

e some nhotation, such as .EXTERNAL, is used to tell assembler
that a symbol is defined in another module

* linker will search symbol tables of other modules to resolve
symbols and complete code generation before loading

Another Example

Count the occurrences of a character in a file
* Program begins at location x3000

Read character from keyboard

Load each character from a “file”

> File is a sequence of memory locations

> Starting address of file is stored in the memory location
immediately after the program

If file character equals input character, increment counter
End of file is indicated by a special ASCIl value: EOT (x04)

At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)

A special character used to indicate the end of a sequence
is often called a sentinel.

« Useful when you don’t know ahead of time how many times
to execute a loop.

