14. TRAP and I/O Service Routines (Chapter 9)
October 17, 2018

e LC-3 TRAP Routines
e TRAP mechanism
TRAP instruction
Handling 1/O
Halting the computer
Saving and restoring registers

2 A L WESNESDAY] O@" ’5\[

REVLEW SESSTON &
SUNDAY o CT- 2%, 2 -5 PM
LN 18 /b ssRoo

System Calls

Certain operations require specialized knowledge
and protection:

» specific knowledge of I/O device registers
and the sequence of operations needed to use them

e |/O resources shared among multiple users/programs;
a mistake could affect lots of other users!

Not every programmer knows (or wants to know)
this level of detail

Provide service routines or system calls
(part of operating system) to safely and conveniently
perform low-level, privileged operations

System Call

1. User program invokes system call.
2. Operating system code performs operation.
3. Returns control to user program.

In LC-3, this is done through the TRAP mechanism.

LC-3 TRAP Mechanism

1. A set of service routines.
o part of operating system -- routines start at arbitrary addresses
(convention is that system code is below x3000)
e up to 256 routines B
2. Table of starting addresses.
o stored at x0000 through x00FF in memory
e called System Control Block in some architectures

3. TRAP instruction.
* used by program to transfer control to operating system
* 8-bit trap vector names one of the 256 service routines

4. A linkage back to the user program.
}} want execution to resume

immediately after the TRAP instruction

TRAP Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
TRAP (1 11 1/0 0 0 © trapvect8

Trap vector
 identifies which system call to invoke
e 8-bit index into table of service routine addresses
»>in LC-3, this table is stored in memory at 0x0000 — 0x00FF
> 8-bit trap vector is zero-extended into 16-bit memory address

Where to go
* lookup starting address from table; place in PC

How to get back
e save address of next instruction (current PC) in R7

TRAP

Memory

PC Register File
©
S —
IR[7:0] Ry
i —
Instruction Reg 2@
L
\ MAR
Alt,L
MDRIL———

NOTE: PC has already been incremented
during instruction fetch stage.

RET (JMP R7)

How do we transfer control back to
instruction following the TRAP?

We saved old PC in RY.
e JMP RY7 gets us back to the user program at the right spot.

* LC-3 assembly language lets us use RET (return)
in place of “JMP R7".

Must make sure that service routine does not
change R7, or we won’t know where to return.

TRAP Mechanism Operation

USer Program

1111 0000 0010 0011

System Control Block

0000 0100 1010 0000

1. Look up starting address.
2. Transfer to service routine.
3. Return (JMP R7).

x04A

Service Routine

B

1100 000 111 000000

Example: Using the TRAP Instruction

.ORIG x3000

LD R2, TERM — -v& <f ciaR,

LD R3, ASCII
AGAIN TRAP x23 |

ADD R1, R2, RO

BRz EXIT |

ADD RO, RO, R3

TRAP x21

BRnzp AGAIN 3}
TERM .FILL XFFC9
ASCII .FILL . X0020
EXIT TRAP x25

.END

Example: Output Service Routine

.ORIG x0430

ST R7, SaveR7

ST R1, SaveR1
----- Write character

TryWrite LDI R1, DSR
BRzp TryWrite

WriteIt STI RO, DDR

R Return from TRAP

Return LD R1, SaveR1
LD R7, SaveR7
RET

DSR .FILL xFE04

DDR .FILL XFEO06

SaveR1 .BLKW 1

SaveR7 .BLKW 1
.END

» syscall address <+
; save R7 & R1

; get status
- ook for bit 15 on
* write char

* restore R1 & R7

» back to user
:» Address of displayl SR
» Address of disp.

stored in table,
location x21

TRAP Routines and their Assembler Names

vector | symbol |routine

X20 | GETC |read a single character (no echo)

x21 OUT | output a character to the monitor

x22 | PUTS |write a string to the console

X23 IN Eergg g:}odmer::thtg %%r:frglgt’er from keyboard
X25 HALT |halt the program

Saving and Restoring Registers
Must save the value of a register if:

e Its value will be destroyed by service routine, and
e We will need to use the value after that action.

Who saves?
e caller of service routine?

> knows what it needs later, but may not know what gets
altered by called routine

e called service routine?

= »knows what it alters, but does not know what will be
needed later by calling routine

Example

LEA R3, Binary
LD R6, ASCII ; char->digit template
‘z§ LD R7, COUNT ; initialize to 10
AGAIN |/ - TRAP x23 ; Get char
e ADD RO, RO, R6 convert to number

STR RO, R3, #0 store number

- ADD R3, R3, #1 incr pointer
ADD R7, R7, -1 decr counter

|NE \|NE N N W@

BRp AGAIN more?
BRnzp NEXT

ASCII .FILL XFFDO

COUNT .FILL #10

Binary -.BLKW #10

What's wrong with this routine?
What happens to R7?

Saving and Restoring Registers

Called routine -- “callee-save”

. Before start, save any registers that will be altered
(unless altered value is desired by calling program!)

o Before return, restore those same registers

Calling routine -- “caller-save”

e Save registers destroyed by own instructions or
by called routines (if known), if values needed later

> save R7 before TRAP
> save RO before TRAP x23 (input character)
» Or avoid using those registers altogether

Values are saved by storing them in memory.

Question
Can a service routine call another service routine?

NOT 2IRECTL Y (‘Q:; ;>

If so, is there anything special the calling service routine
must do?

What about User Code?

Service routines provide three main functions:
1. Shield programmers from system-specific details.
2. Write frequently-used code just once.

3. Protect system resources from malicious/clumsy
programmers.

Are there any reasons to provide the same functions
for non-system (user) code?

ADD*

ADD*

AND*

AND*

BR

JMP

JSR

JSRR

LD*

LDI*

LDR*

LEA*

NOT*

RET

RTI

ST

STI

STR

TRAP

reserved

1514 1312 11 109 8 7 6 5 4 3 2 1 O

| | | | | | | 1 1 I
0001 DR SR1 0 00 SR2

1 1 | 1 1 1 1 1 1 1

I 1 | I 1 | 1 | I | I
0001 DR SR1 1 imm5

1 | | 1 | | 1 1 1 | |

]] | | | | I | | |
0101 DR SR1 0 00 SR2

1 1 | 1 | 1 1 i | 1 |

| | | | | | | | | | |
0101 DR SR1 1 imm5

1 1 1 | 1 | | | 1 | |

| |] | I T T] 1 | T
0000 nfz|p PCoffset9

| 1 | 1 1 1 | 1 | 1 1

| | | I | | | | 1 1 | |
1100 000 BaseR 000000

1 1 1 | 1 | | | 1 1 1 |

| | I | I | | T | | | |
0100 1 PCoffset11

1 1 1 1 1 | | | | | 1 |

| | |]]] | [I | |
0100 0 00 BaseR 000000

L 1 1 1 1 | | 1 1 1 1

] I] | I] | T] | | | |
0010 DR PCoffset9

1 1 1 | 1 1 1 | | 1 1 | |

I 1 | I I | 1 I I I 1 I I
1010 DR I PCoffset9

1 i | 1 | | 1 1 | | 1 1 1 |

I | | | | | | | | | | |
0110 DR BaseR offset6

| 1 | 1 1 1 1 | 1 | 1 1

1 1 I |} 1 1 1 I I 1 1 1 I
1110 DR PCoffset9

1 1 1 | 1 1 1 | | 1 | | |

I I | I I | I T 1 | 1 |
1001 DR SR 111111

| | | 1 1 1 1 | | I 1 |

| | | | | | | | | I |]
1100 000 111 000000

1 1 | 1 1 1 | | | | 1 1

I] |] I I | I I I | 1 |
1000 000000000000

1 | | 1 | 1 L | | 1 1 1 1

| |] I I T | | | 1 I | |
0011 SR PCoffset9

1 | 1 | | | 1 1 | 1 1 1 1

|] | I | | 1 1 | I | |
1011 SR PCoffset9

1 1 1 | 1 1 | | | 1 1 1 |

I | | 1 | | T | T | |
0111 SR BaseR offset6

1 | | 1 1 1 1 | | | 1 1

| | | | 1 1 1 I | I | |
1111 0000 trapvect8

1 1 1 | | 1 1 | 1 1 1 |

| I] | 1 | | 1 1 1 | | |
1101

1 1 | 1 1 | 1 | | | | 1 1

MAR<-SP
[PSR[15]]

PSR[10:8]

PSR[1

Vector<—INTV
MDR<-PSR

[PSR[15]]

<—Priority

5]<-0

BEN<-IR<11>:N+IR<10>-Z+IR<9>-P

[IR[15:12]]

R

/ 0

36

=D
R

| 38

<

PC<-MDR) oS
v %

(' MAR, SP<-SP+1)

SP<-SP+1
[PSR[15]]

Vector<—x00
MDR<-PSR
PSR[15]<-0

. Saved_SSP<-SP
Netiing j (SP<—Saved_USPJ

To 18 To 18

See Figure C2

Vector<—x01

MDR<-PSR

PSR[15]<-0
[PSR[15]]

To 37 To45

0

| 52
MDR<-M
R
R
Y s

