15. Subroutines (Chapter 9) TRAP Instruction

October22, 2018 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TRAP [1 1 1 1[0 0 0 0] trapvects |

* Review
» LC-3 TRAP Routines Trap vector
* TRAP mechanism) + Identifies which system call to invoke
* Saving and restoring registers - 8-bit index into table of service routine addresses
. »>in LC-3, this table is stored in memory at 0x0000 -
e Subroutines O0Xx00FF
e Calling and return »>8-bit trap vector is zero-extended into 16-bit memory
« Passing parameters address
e Examples
Where to go
e Look up starting address from table; place in PC
How to get back
e Save address of next instruction (current PC) in R7
——
TRAP Mechanism Operation TRAP Routines and their Assembler Names
User Program System Control Block
x0023[0000 0100 1010 0000 -
A P ‘vector | symbol |routine
e 7 X20 | GETC |read a single character (no echo)
P 1. Lookup starting _addres_s. x21 OUT |output a character to the monitor
s 2. Transfer to service routine. - -
——— 7 3. Return (JMP R7). X22 | PUTS |write a string to the console
print prompt to console,
x23 IN read and echo character from keyboard
c %04A] Service Routine X25 | HALT |halt the program
B
1100 000 111 000000

Subroutines

A subroutine is a program fragment that:
« lives in user space
« performs a well-defined task
¢ is invoked (called) by another user program
 returns control to the calling program when finished

Like a service routine, but not part of the OS
» not concerned with protecting hardware resources
° no special privilege required

Reasons for subroutines:

 reuse useful (and debugged!) code without having to
keep typing it in

 divide task among multiple programmers

» use vendor-supplied l/ibrary of useful routines

JSR

PC . Register File

|R[1b;0] J
ALU

Instruction Reg

NOTE: PC has already been incremented‘ \)

during instruction fetch stage.

JSR Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSR 010 01] PCoffsetll

Jumps to a location (like a branch but unconditional),
and saves current PC (addr of next instruction) in R7.
* saving the return address is called “linking” B
- target address is PC-relative (PC + Sext(IR[10:0]))
« bit 11 specifies addressing mode
>if =1, PC-relative: target address = PC + Sext(IR[10:0])
> if =0, register: target address = contents of register IR[8:6]

JSRR Instruction

15 14 13 12_11110 9 8 7 6 5 4 3 2 1 0
JSRR 01 00/0 00 Base |0 00O0O0O

Just like JSR, except Register addressing mode.
 target address is Base Register
° bit 11 specifies addressing mode

What important feature does JSRR provide
that JSR does not?

JSRR

pcl” Register File

Base

NOTE: PC has already been incremented
during instruction fetch stage.

Returning from a Subroutine

RET (JMP R7) gets us back to the calling routine.
* just like TRAP

Passing Information to/from Subroutines

Arguments
* Avalue passed in to a subroutine is called an argument.
* This is a value needed by the subroutine to do its job.
° Examples:
»In 2sComp routine, RO is the number to be negated
»In OUT service routine, RO is the character to be printed.
>In PUTS routine, RO is address of string to be printed.
Return Values
* Avalue passed out of a subroutine is called a return value.
 This is the value that you called the subroutine to compute.
° Examples:
»In 2sComp routine, negated value is returned in RO.

> In GETC service routine, character read from the keyboard
is returned in RO.

2sComt NoT RO RO F ;gQ;\n\);tz
AP Ro Ro, #1 ada L
RET

EXANTLE ! veehte vaLJe W RO

CALCING FRowN A PROCEAML
(_-\\vx&\u\n jo2l- Lw&%lm&f&ﬂ\;)

j tomroTE Riy = RI-R3

ADD RO, R3, H#0 }@WJ@FSG
TSR Zscomt 5
ADp Rb,R1 RO A”TOR\

22141 50 SHEETS
22-142 100 SHEETS
22-144 200 SHEETS

®
s

{
’

¢
=P = P
NeTE: cALLER pousT sAVE RO

Using Subroutines

In order to use a subroutine, a programmer must
know:
« its address (or at least a label that will be bound to its
address)
e its function (what does it do?)
»NOTE: The programmer does not need to know
how the subroutine works, but
what changes are visible in the machine’s state
after the routine has run.
« its arguments (where to pass data in, if any)
« its return values (where to get computed data, if any)

Saving and Restore Registers
Since subroutines are just like service routines,

we also need to save and restore registers, if needed.

Generally use “callee-save” strategy,
except for return values.

» Save anything that the subroutine will alter internally
that shouldn’t be visible when the subroutine returns.

¢ It’s good practice to restore incoming arguments to
their original values (unless overwritten by return value).

Remember: Youj/lUSJ"s_ave R7if you call any other
subroutine or sérvice routine (TRAP).
» Otherwise, you won’t be able to return to caller.

CountChar Algorithm (using FirstChar)

save regs Rl1<-R2+1
|
call FirstChar

| TT—_ saveR?7

R3 <- M(R2)

restore
regs

return

no

Can write the second subroutine first, ‘
without knowing the implementation of FirstChar! h

since we’re using JSR

Example

(1) Write a subroutine FirstChar to:

find the first occurrence

of a particular character (in R0)

in a string (pointed to by R1);

return pointer to character or to end of string (NULL) in R2.

(2) Use FirstChar to write CountChar, which:

counts the number of occurrences
of a particular character (in R0)
in a string (pointed to by R1);

return count in R2,

| N

CountChar Implementation

; CountChar: subroutine to count occurrences of a char
CountChar
ST R3, CCR3 ; save registers
ST R4, CCR4
ST R7, CCR7 ; JSR alters R7
ST R1, CCR1 save original string ptr
AND R4, R4, #0 initialize count to zero
CC1 JSR FirstChar find next occurrence (ptr in R2)
LDR R3, R2, #0 see if char or null
BRz cc2 if null, no more chars
ADD R4, R4, #1 increment count
ADD R1, R2, #1 point to next char in string
BRnzp CC1
cC2 ADD R2, R4, #0 ; move return val (count) to R2
LD R3, CCR3 ; restore regs
LD R4, CCR4
LD R1, CCR1
LD R7, CCR7
RET ; and return

NENENENENENENe N

FirstChar Implementation

FirstChar Algorithm

FirstChar: subroutine to find first occurrence of a char

4

; initialize ptr to beginning of string

2
3 8
= <
I o
g 5
= 0 Lo
&3 cScd o
0 S o g3 98s ¢
S = 3 -]) >
s BL SCoS vy 2
o So =8 = g > <
5D s¢Eges =
= &= = e S @ =
S 09 S _-u & g [}
oo T -3 = n o S y
S >SS D cs2029s B T
T T D oS o> 3 S
n n c 2= ox& 2 «
doo ¢ o
H* O H [+4 3+
M o<
x o NN N ~ ~ X
coesdHN ® N OO
Lo o 9 & WL
R R S - S
OTITNMNOMONO M
ool L E0L @
)
. FoaQX N NAcC -
SO0 O0OKQXEOXEXOAO W
SorvEIIJd<adId I
=
7
“ “ o
= o o
[[e
(%]
2 — :
+ 0] c
elo| |54 |E
- (2D 2
1 Mw — (O]
\'% = =
~N
o
S g
0
o)) mm o 3
o) ~ >
L R =
) vV I
o | o b
) o m
o

Library Routines
Vendor may provide object files containing

useful subroutines

A

I
|

* don’t want to provide source code -- intellectual property
» assembler/linker must support EXTERNAL symbols

H

(or starting address of routine must be supplied to user)

.EXTERNAL SQRT

LD

load SQRT addr

R2, SQAddr :

JSRR R2
FILL

SQRT

Using JSRR, because we don’t know whether SQRT
is within 1024 instructions.

SQAddr

uinjax pue !

si93stbox axojzsex !

I93utod jusweIdUT !

padd !
[k

dUop 21ZZZ\9M ‘sek T !

aeyo Indut sayojew JT 29s !

suop @iggzz\sm ‘TTnu T !

I930eTRYD pEax !
Butxys jo Buruurbaq 03 a3d 9ZTTeT3ITUT !

suosTtIedwod 103 Q¥ @3ebou !
aeyo [eutrbrio ases !
sI23stbax anes !

JeUd B JO 9OULIINDDO JSITJ Putj 03

sbax a103s9x !
24 031 (3unod) TeA uInjax saow !

Butils ur xeyo jxau o3 jurod !
Junoo jJusweIOUT !
sIeyo @Iow ou ‘[rnu T !
TInu 0 Ieyos JT @9s !
(zd ut 13d) 20ULIINODO IXBU PUTF !
0197 03 3UNOd VZTTeTITUT !
I3d Butals TeutbrIo @nes !
L¥ sa93Te ¥se !

sa93stbex aaes !

o# ‘e !
o# ‘1™’
T# ‘vy

0¥
Pu0d
€¥Dd 1

dUTINOAGNS : IBYDISITI

T# ‘T

LA

-

R Rk

L4920 ‘¥
TH0D ‘T™
E0D ‘' p¥
€400 €y
o# ‘pa ‘z¥
00
H Ty ‘1™
LE I 2 24
: zo0
o# ‘zd '€y
TeydISIT
0# ‘v¥ ‘py
THOD ‘T¥
L¥DD ' Ld
0D ‘%
€400 ‘€Y
000€x

and -”
U it
Mg

Mg
mag -
UGt
M
rcess
at

at
dzuyg
aav
2yd
aav
2yd
uaT
aav
aav
ION
LS

firs)

v¥dd
€¥DA

L¥DD
7800
€400
T¥DD

o4

TeYDISIATI

Z00

00

JTeypiunod

DI¥O"

ABUD B JO S2DUSIINDO0 JUNOD 03 SUTINOIGNS :IBYDHIUNOD

