15. Subroutines (Chapter 9)
October 22, 2018

* Review
 LC-3 TRAP Routines
e TRAP mechanism
e Saving and restoring registers

e Subroutines
e Calling and return
* Passing parameters
o Examples

3 2 1 D

TRAP Instruction

15 14 13 12 11 10 9

TRAP (1 11 1{0 0 0 0

8 7 6 5 4
trapvect8

Trap vector
* Identifies which system call to invoke

e 8-bit index into table of service routine addresses
>in LC-3, this table is stored in memory at 0x0000 -

Ox00FF
»>8-bit trap vector is zero-extended into 16-bit memory

address

Where to go
* Look up starting address from table; place in PC

LS

How to get back
o Save address of next instruction (current PC) in R7

TRAP Mechanism Operation

User Program

1111 0000 0010 OO11

System Control Block

0000 0100 1010 0000

1. Lookup starting address.
2. Transfer to service routine.
3. Return (JMP R7).

x04A

Service Routine

B

1100 000 111 000O0OOO

TRAP Routines and their Assembler Names

vector | symbol |routine

x20 | GETC |read a single character (no echo)

x21 OUT | output a character to the monitor

x22 | PUTS |write a string to the console

X23 IN Eenart]cg F531:10dmepcthtg Ccc;]rjasrglcet’er from keyboard
X25 HALT | halt the program

Subroutines

A subroutine is a program fragment that:
 lives in user space
e performs a well-defined task
 is invoked (called) by another user program
* returns control to the calling program when finished

Like a service routine, but not part of the OS
e not concerned with protecting hardware resources
e no special privilege required

Reasons for subroutines:
» reuse useful (and debugged!) code without having to
keep typing it in
o divide task among multiple programmers
e use vendor-supplied library of useful routines

JSR Instruction

13 14 13 12 11 14 9 8 7 € 5 4 3 2 1 0

JSR 01001 - PCoffsetll

Jumps to a location (like a branch but unconditional),
and saves current PC (addr of next instruction) in | R7’
° saving the return address is called “linking” |
o target address is PC-relative (PC + Sext(lR[lO o))
» bit 11 specifies addressmg mode
> if =1, PC-relative: target address = PC + Sext(IR[10:0])
> if =0, register: target address = contents of register IR[8:6]

JSR
Register File

PC

2 L

Sext i
2 TIR[10:O] N
, AL
Instruction Reg (3)

NOTE: PC has already been incremented
during instruction fetch stage. ,

JSRR Instruction

16 14 13 12 11 10 9 8 7 6

5 4 3 2 1
| |
JSRR [0 1 0 0/0/0 0/ Base |0 0 0 0 0

O o

,7\ A

Just like JSR, except Register addressing mode.

o target address is Base Register
e bit 11 specifies addressing mode

What important feature does JSRR provide
that JSR does not?

JSRR

(2) - -
PC Register File
\ 4
Base
(1)

NOTE: PC has already been incremented
during instruction fetch stage.

Returning from a Subroutine

RET (JMP R7) gets us back to the calling routine.
e just like TRAP

22-141 50 SHEETS
22-142 100 SHEETS
22-144 200 SHEETS

o

QXAM\?LE: JecAte VALUE inl RO

e

zscom NoT RO, RO £ QQN\D\D
ADD Ro} RO, 41 WL

RET

CALCING FRoWN A F(’\aqp_m/\ |
[asiinn 024 Mmmw>
j cemvoTE Rl = Ri-}QB
ADD RO, R3 ' CQWJ@ £
TSR Zscomt }
APD Ry RL RO /*”‘TO“

{

| ¢ |
NoTE! CALLER MUST SAVE RO

_—

= EE- D%P L INTE R

Passing Information to/from Subroutines

Arguments
o A value passed in to a subroutine is called an argument.
- This is a value needed by the subroutine to do its job.
o Examples:
»In 2sComp routine, RO is the number to be negated
> In OUT service routine, RO is the character to be printed.
> In PUTS routine, RO is address of string to be printed.

Return Values
 Avalue passed out of a subroutine is called a return value.
e This is the value that you called the subroutine to compute.
o Examples: .
> In 2sComp routine, negated value is returned in RO.

>In GETC service routine, character read from the keyboard
is returned in RO.

Using Subroutines

In order to use a subroutine, a programmer must
know:

* its address (or at least a label that will be bound to its
address)

e its function (what does it do?)

»NOTE: The programmer does not need to know
how the subroutine works, but
what changes are visible in the machine’s state
after the routine has run.

* its arguments (where to pass data in, if any)
o its return values (where to get computed data, if any)

Saving and Restore Registers

Since subroutines are just like service routines,
we also need to save and restore registers, if needed.

Generally use “callee-save” strategy,
except for return values.

e Save anything that the subroutine will alter internally
that shouldn’t be visible when the subroutine returns.

 It’s good practice to restore incoming arguments to
their original values (unless overwritten by return value).

|

Remember: You MUST save R7if you call any other

—

subroutine or service routine (TRAP).
e Otherwise, you won’t be able to return to caller.

Example

(1) Write a subroutine FirstChar to:

find the first occurrence

of a particular character (in R0) .
in a string (pointed to by R1);
return pointer to character or to end of string (NULL) in R2.

(2) Use FirstChar to write CountChar, which:

counts the number of occurrences
of a particular character (in R0)

in a string (pointed to by R1);
return count in R2.

‘ i\

Can write the second subroutine first,
without knowing the implementation of FirstChar! \f

CountChar Algorithm (using FirstChar)

save regs { R1 <-R2 + 1

call FirstChar

since we’re using JSR

R3 <- M(R2)

restore
regs

< rettjrn >

no

yes

CountChar Implementation

» CountChar: subroutine to count occurrences of a char

CountChar
ST
ST
ST
ST
AND

CcC1i JSR
LDR
BRz
ADD
ADD
BRnzp

CC2 ADD
LD
LD
LD
LD
RET

R3, CCR3
R4, CCR4
R7, CCR7
R1, CCR1
R4, R4, #0
FirstChar
R3, R2, #0
CC2

R4, R4, #1
R1, R2, #1
cC1i

R2, R4, #0
R3, CCR3
R4, CCR4
R1, CCR1
R7, CCR7

| E NE NED NE N N N W

.

save registers

JSR alters R7

save original string ptr
initialize count to zero

find next occurrence (ptr in R2)
see If char or null

if null, no more chars
increment count

point to next char in string

move return val (count) to R2
restore regs

and return

FirstChar Algorithm

R3="_vyes

save regs by

R2 <- R1 "

R2 <-R2+1
R3 <- M(R2) F |

restore a

regs

R3= no

b < ret‘urn >

yes

FirstChar Implementation
» FirstChar: subroutine to find first occurrence of a char

FirstChar
ST
ST
NOT
ADD
ADD

FC1 LDR
BRz
ADD
BRz
ADD
BRnzp

FC2 LD
LD

RET

R3, FCR3
R4, FCR4
R4, RO
R4, R4,
R2, R1,
R3, R2,
FC2

R3, R3,
FC2

R2, R2,
FC1

R3, FCR3
R4, FCR4

#1
#O
#0O
R4

#1

; save registers
; save original char
» negate RO for comparisons

- Initialize ptr to beginning of string
; read character

; If null, we’re done

: see if matches input char

» If yes, we'’re done

: Increment pointer

; restore registers

» and return

uInjialx pue
sa93sTbox sxojsax

I93uTod JUSWSIDUT

SUOp aigzz\am ‘sak JIT

Teyd InduTl saydjlew JT 29S

SUop aIggg\sm ‘TInu JT

I930eIRYD pEDI

Butais Jo Butuutrboq o3 x3d 9ZTTeTATUT

suosTaedwod I03 (Y =23ebou
Ieyd TeutbTiIo aaes
sIi931s1bax aaes

IeUD ' JO 90USIANDOO0 3JSITF PUTJ 07

sbax aI103s9x
Zd 031 (3unod) Tea uUINIDI SA0W

Bbutias ur xeyo 3Ixau 03 jutod
JUNOD JUSWSIDUT
SIeyd aIow ou ‘TInu JT
IInu I0 Jeyo JT 998
(29 ut 13d) °90USIANDDO IXOU putly
0I9Z 03 3JUNOD SZTTRTITUT
I13d Butaias Teutbtao aaes
LY sSI=3Te ¥sSpe

sI93sTboax aaes

Ieyd B JO S3{D0USDIINDDO Junod 0]

! 725101 B A%
: €d0d ‘€Y
o4
: T# ‘29 ‘g™
! zod
: P ‘€9 ‘€Y
: zod
! O# ‘29 ‘€9
: o# 'T9 ‘2™
T# ‘99 ‘¥4
! 0¥ ‘pd
: 2SO A A
! €aDd ‘€9

—

L B B |

andg -

MMTId

MYI1d -

m¥I19g -
MATId "
Mg -
MyIg-

L

a

g4
at
T

dzuyg

a
Z

a
Z
qa
a
a
L

SUTINOIQNS :IBYDISIATH

L¥DD ‘LY

T8DD 'T1¥

790D ‘p¥

: €d0D ‘€™
! 0# ‘79 ‘z¥
oD

! T# ‘29 ‘1™

! T# ‘99 ‘99
! ’ Z¢od

! 0# ‘z¥ ‘¢¥
H IeyDIisITd
: O# ‘%8 ‘9Y
! TdDD ‘T¥

: L8230 'L¥

7800 ‘9¥

: €¥0D ‘€M

000¢ex

LT

aa
dzu

av
qd
av
ad
T

av
av
ON
IS
LS

7a04
€904

L¥9DD
740D

1R:10)9)
TaoD

2od

o4

IeYyDISIATI

11

YH
a1
a1
at
a1
-4

dd

aavy

a
Z
o
s
a

SUTINOIONS :IBeYDHIUuno)d

av
dd
a1
L

NY
LS
LS
LS
LS

Zoo

20

IeydIiuno)d
DI¥O-

P

Library Routines

Vendor may provide object files containing
useful subroutines

e don’t want to provide source code -- intellectual property

o assembler/linker must support EXTERNAL symbols
(or starting address of routine must be supplied to user) |

_EXTERNAL SQRT

LD R2, SQAddr ; load SQRT addr
JSRR R2

SQAddr .FILL SQRT

Using JSRR, because we don’t know whether SQRT
is within 1024 instructions.

