19. The Stack
Chapter 10

- Data Structures
 Linked Lists ——
e Queues =
e Hardware stack. — —— [FO
e Software implementation —
e PUSH and POP
 Arithmetic using a stack

Queve : FIFD
fest |8 FiesT ouT

Stacks

A LIFO (last-in first-out) storage structure.
» The first thing you put in is the last thing you take out.
» The last thing you put in is the first thing you take out.

Xﬁk\\
This means of access is what defines a stack, - —

not the specific implementation.

Two main operations:
PUSH: add an item to the stack

POP: remove an item from the stack

November 5, 2018

Stack: An Abstract Data Type

An important abstraction that you will encounter

in many applications

We will describe three uses:

Interrupt-Driven 1/O
¢ The rest of the story...

Evaluating arithmetic expressions

» Store intermediate results on stack instead of in registers

Data type conversion
e 2’s comp binary to ASCII strings

SOBROVTINE cALLS — RECURSION

e (w{\@y WA ﬁc}
A Physical Stack

Coin rest in the arm of an automobile

1995 1996 1998
1998 (1982
1982 1995
1995
IV
Initial State After After Three After
One Push More Pushes One Pop

First quarter out is the last quarter in.

A Hardware Implementation
Data items move between registers

Empty: Empty Empty Empty

[111]] |<=TOP | 418 |«<TOP | 412 |«TOP | 431 |« TOF
) 111t #5 #18
Iy 111 #31 1111
111111 I #18 111111
1111 1111 1111 111171
Initial State After After Three After
One Push More Pushes Two Pops

Basic Push and Pop Code

For our implementation, stack grows downward
(when item added, TOS moves closer to 0) p,n v RO

Push
ADD R6, R6, #-1 ; decrement stack ptr
STR RO, R6, #0 ; store data (RO)

Pop
LDR RO, R6, #0 ; load data from TOS
ADD R6, R6, #1 ; decrement stack ptr

incpement

A Software Implementation

Data items don't move in memory,
just our idea about there the TOP of the stack is.

11111 111 #12 |<TOP #12
1111 111 #5 #5
1111 1111 #31 #31. |«TOP
111111 #18 |«TOP #18 #18
[1111] |«<TOP | []]]]] 111111 i
R R6 R R6
x4000 |R6 X3FFF [X3FFC |R6 | x3FFE
Initial State After After Three After
One Push More Pushes Two Pops

By convention, R6 holds the Top of Stack (TOS) pointer.

Pop with Underflow Detection

If we try to pop too many items off the stack,

an underflow condition occurs.
= Check for underflow by checking TOS before removing data.
» Return status code in R5 (0 for success, 1 for underflow)

POP LD R1, EMPTY ; EMPTY = -x4000
ADD R2, R6, R1 ; Compare stack pointer
BRz FAIL ; with x3FFF
LDR RO, R6, #0
ADD R6, R6, #1
AND R5, R5, #0 ; SUCCESS: R5 = 0
RET

FAIL AND R5, R5, #0 ; FAIL: R5 = 1
ADD R5, R5, #1
RET

EMPTY .FILL xC000

Push with Overflow Detection

If we try to push too many items onto the stack,

an overflow condition occurs.
e Check for underflow by checking TOS before adding data.
e Return status code in R5 (0 for success, 1 for overflow)

PUSH LD R1, MAX
ADD R2, RG,
BRz FAIL
ADD R6, R6,
STR RO, R6,
AND R5, RS,
RET .

FAIL AND R5, RS,
ADD R5, R5,
RET

MAX .FILL XCO005

R1 ;
#-1
#0 ;

#0 ;
#1

MAX = -X3FFB_
Compare stack pointer
with x3FFF

SUCCESS: R5 = 0

FAIL: R5 = 1

Arithmetic Using a Stack
Instead of registers, some ISAs use a stack for

source and destination operations: a zero-address machin

+ Example:

ADD instruction pops two numbers from the stack,
adds them, and pushes the result to the stack.

Evaluating (A+B)-(C+D) using a stack:

(1) push A,
(2) push B
(3) ADD

(4) push C
(5) push D
(6) ADD

(7) MULTIPLY
(8) pop result

Why use a stack?
e Limited registers.
» Convenient calling convention
for subroutines.
* Algorithm naturally expressed
using #¥IFO data structure.

- MO

SPREAGE

Saving Registers when using Stack
Using R1, R2 and R5

Save R1 and R2 in PUSH and POP routines then restore
before return J—

e Calling program does not have to know that these registers are
being used

» “Callee-save”

R5 is needed to report success or failure

e Calling program needs to save R5 before the JSR routine is
executed

* “Caller-save”

Example: OpAdd
POP two values, ADD, then PUSH result.

START

‘ POP ‘ POP ‘
@ Yes 6 Yes
No No

Put back both

.

’ Put back first

Example: OpAdd

OpAdd JSR POP ; Get first operand.
ADD R5,RS5, #0 Check for POP success.

BRp Exit If error, bail.
. ADD R1,RO,#0 Make room for second.
JSR POP '; Get second operand.

Check for POP success.

If err, restore & bail.
Compute sum.

Check size.

If err, restore & bail.
Push sum onto stack.

ADD R5,R5,#0
BRp Restorel
ADD RO,RO,R1
JSR RangeCheck
BRp Restore2
R PUSH

RET

Restore2 ADD R6,R6,#-1 ; Decrement stack pointer

; (undo POP)
Restorel ADD R6,R6,#-1 ; Decrement stack pointer

Exit X @\

FSSUE wiTH

NE NS NE NS NS NE NENENe Ne N

3 ROUTINE
23 (SopReuTIFE CALLING PNaTHE R SUBROY /\

{
™M STAUS
sade F N l\J\C/‘/v\DL‘j OF fLI‘SH/PUF DNI,F(L‘O

