22. Example Using Interrupts November 14, 2018

Chapter 10 . Interrupt-Driven 1/O
To implement an interrupt mechanism, we need:
* Review » A way for the 1/O device to signal the CPU that an
« Interrupt-driven 1/0 interesting event has occurred.

¢ A way for the CPU to test whether the interrupt signal is set
]] and whether its priority is higher than the current program.
e Multiple interrupts

Generating Signal
° Interrupt state diagram and structure « Software sets "interrupt enable" bit in device register.
* When ready bit is set and IE bit is set, interrupt is signaled.

* Examples . .

e Executing two concurrent tasks interrupt enable bit. 0

« Interrupt handler code ready bit———%] | KBSR

interrupt s:gna_l_
o tO pr ocessor

Priority Testing for Interrupt Signal
Every instruction executes at a stated level of urgency. CPU looks at signal between STORE and FETCH phases.
LC-3: 8 priority levels (PA_O -PL7) If not set, continues with next instruction.

* Example: Sl If set, transfers control to interrupt service routine.

> Payroll program runs at PLO.
> Nuclear power correction program runs at PL6.

¢ It’s OK for PL6 device to interrupt PLO program,
but not the other way around.

L. ; L) Transfer to
Priority encoder selects highest-priority device, ISR
compares to current processor priority level,
and generates interrupt sngnal if approprlate
TE: INTR. cdAeLE
ROV DEICE READY

PL o L_,“;—i/ Details in Chapter 10
2 »

Full Implementation of LC-3 Memory-Mapped 1/0

GateMDR

MDR_|<i—LDMDR| [MAR |—LD.MAR

\Y \V4
ADDR.CTL.
LOGIC

MIO.EN

R < MEMORY

MEM.EN

INMUX |

Because of interrupt enable bits, status registers (KBSR/DSR)
must be written, as well as read.

Processor State
What state is needed to completely capture the
state of a running process?
Processor Status Register
 Privilege [15], Priority Level [10:8], Condition Codes [2:0]
15 14 13 12 11 10 9 8 7 6 5 4 32 10
P B In|z]P

Program Counter
» Pointer to next instruction to be executed.

Registers
« All temporary state of the process that’s not stored in memory.

Interrupt-Driven 1/O (Part 2)

Interrupts were introduced in Chapter 8
1. External device signals need to be serviced
2. Processor saves state and starts service routine
3. When finished, processor restores state and resumes program

Interrupt is an unscripted subroutine
call, =
triggered by an external event.

Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack

Now, we’re ready...

Save State on a Stack

Supervisor Stack

A special region of memory used as the stack
for interrupt service routines
¢ Initial Supervisor Stack Pointer (SSP) stored in Saved.SSP

» Another register for storing User Stack Pointer (USP):
Saved.USﬂ

—_—

Want to use R6 as stack pointer
e So that our PUSH/POP routines still work

When switching from User mode to Supervisor mode
(as result of interrupt), save R6 to Saved.USP

Invoking the Service Routine — The Details

1. If Priv =1 (user),
Saved.USP = R6, then R6 = Saved.SSP.. -

2. Push PSR and PC to Supervisor Stack.

3. Set PSR[15] = 0 (supervisor mode).

4. Set PSR[10:8] = priority of interrupt being serviced.

5. Set PSR[2:0] = 0.

6. Set MAR = x01vv, where vv = 8-bit interrupt vector
provided by interrupting device (e.g., keyboard = x80).

7. Load memory location (M[x01vv]) into MDR.

8. Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

Example
Program A ISR for
Saved.SSP Device B
111t
x6202 | AND

1111l 43006 ADD SR o
111111 . Device C
s x6210| RTI Xx6300
111111

PC| x3006

x6315 RTI

Executing ADD at location x3006 when Device B interrupts

Executing AND at x6202 when Device C interrupts.

Returning from Interrupt

Special instruction - RTI - that restores state
15 14 13 12 11 10 1 0

RTIlOOOOOOOOOOOOOOO

1. Pop PC from supervisor stack. (PC = M[R6]; R6 = R6 + 1)
2. Pop PSR from supervisor stack. (PSR = M[R6]; R6 = R6 + 1)

3. If PSR[15] = 1, R6 = Saved.USP.
(If going back to user mode, need to restore User Stack Pointer.)

RTI is a privileged instruction.
e Can only be executed in Supervisor Mode
* If executed in User Mode, causes an exception

Example (2)

Program A ISR for
Device B
X6. >
11 /UQ
//”//., x3006| ADD —
6—| x3007 :
P'SFR forA . X6210 RTI
1111
PC

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine MM

Example (3)

G—

1

11111

x3007

PSR for A

111

pe[xez03 |

x3006

Program A

ADD

X6

6202

x6210

ISR for
Device B

>

AND

RTI

Executing AND at x6202 when Device C interrupts.

Example (5)

R6—

x6203

PSR for B

x3007

PSR for A

111

pc[_ xe203]

x3006

Program A

ADD

6202

Xx6210

ISR for
Device.B
f> i E
AND —]
A ISR for
\ Device C
RTI _| x6300~—>
x6315RTI

Execute RTI at x6315; pop PC and PSR from stack.

Example (4)

6—| x6203
PSR for B
x3007
PSR for A
Iy

pc_xe300 |

x3006

Program A

ADD

X6,

6202

x6210

Push PSR and PC onto stack, then transfer to

Device C service routine (at x6300).

Example (6)

Saved.SSP

x6203
PSR for B
x3007
PSR for A
1111

pe a7 |

s 2(\
IS ARIRRE

x3006

Program A

ADD .

R

6202

X6

ISR for
Device B
=>
AND —
) ISR for
Device C
RTI X6300[~—>
x6315|RTI
SIVERN (So (-
ISR for
Device B
>
AND —_
A ISR for
\ Device C
RTI \ | x63007~—>
x6315| RTI

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

Exception: Internal Interrupt

When something unexpected happens
inside the processor, it may cause an exception

Examples:
* Privileged operation (e.g., RTl in user mode)
» Executing an illegal opcode
¢ Divide by zero

e Accessing an illegal address (e g protected system memory)

Handled just like an interrupt
e Vector is determined internally by type of exception
¢ Priority is the same as running program

State Diagram for Interrupt Processing

I 3
:

aEN<-\R<||>N.lR<|n> ZuResp |2

smien

. . ///J P

) Vecres00
®

PoRisIe

foctor<—301

VohepoR

PSR{15]<-0
[PSRI1S])

LC-3 Memory Map (Fig. A.1)

x0000

X0OFF
X0100

X01FF

x0200

X2FFF
3000

XFDFF
XFE00

XFFFF

. LC-3 Interrupt Structure (Fig.

Trap Vector Table

Interrupt Vector Table

Operating system and
Supervisor Stack

Available for
user programs

Device register addresses

C.8)

F———+8] weefN[z[F) j‘
5
wereony-s{From] | ,_,X |
| 0010 |t &
1 108)
- Gai Gaiopsilis 4120)

fio

LoRea-of

s s smil 5
ol QUT _DUT forsm

REG
FILE

‘é\me;f\:?

