22. Example Using Interrupts November 14, 2018
Chapter 10 ,

* Review
e Interrupt-driven I/O

e Multiple interrupts

e Interrupt state diagram and structure

« Examples
o Executing two concurrent tasks
e Interrupt handler code

Interrupt-Driven I/O

To implement an interrupt mechanism, we need:

o A way for the 1/O device to signal the CPU that an
interesting event has occurred.

A way for the CPU to test whether the interrupt signal is set
and whether its priority is higher than the current program.

Generating Signal
o Software sets "interrupt enable" bit in device register.
 When ready bit is set and IE bit is set, interrupt is signhaled.

interrupt enable bit

P S 151413 0

ready bit KBSR

} interrupt signal
| | to processor

—

e e ——————————————— e < e 4 e e e

Priority
Every instruction executes at a stated level of urgency.
LC-3: 8 priority levels (P4[_0-le7)
« Example: foud HIGH
> Payroll program runs at PLO.
> Nuclear power correction program runs at PL6.

 It’s OK for PL6 device to interrupt PLO program,
but not the other way around. ’

Priority encoder selects highest-priority device,
compares to current processor priority level,

and generates interrupt signal if appropriate.
TE: INTR Akl
RON: peicE READY

—+5

Testing for Interrupt Signal

CPU looks at signhal between STORE and FETCH phases.
If not set, continues with next instruction.
If set, transfers control to interrupt service routine.

F
|
D
[}
Transfer to interrupt EA
ISR signal? 1
OoP
|
EX
Details in Chapter 10 é

Full Implementation of LC-3 Memory-Mapped 1/O

Z;GateMDR I
MDR LD.MDR| [MAR k—LD.MAR
MIO.EN I RW | MIOEN [npur
, [KBDR]
ADDR.CTL. !
R <+ MEMORY LOGIC [
|
e R
MEM.EN {<——
INMUX

Because of interrupt enable bits, status registers (KBSR/DSR)
must be written, as well as read.

Interrupt-Driven 1/O (Part 2)

Interrupts were introduced in Chapter 8
1. External device signals need to be serviced
2. Processor saves state and starts service routine

3. When finished, processor restores state and resumes program

Interrupt is an unscripted subroutine
call,
triggered by an external event.

,
2=

Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack

Now, we’'re ready...

Processor State

What state is needed to completely capture the
state of a running process?

Processor Status Register
e Privilege [15], Priority Level [10:8], Condition Codes [2:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P | PL | Njz|P

Program Counter
e Pointer to next instruction to be executed.

Registers
* All temporary state of the process that’s not stored in memory.

Save State on a Stack

Supervisor Stack

A special region of memory used as the stack
for interrupt service routines
* Initial Supervisor Stack Pointer (SSP) stored in Saved.SSP

o Another register for storing User Stack Pointer (USP):
Saved.USP

—_—

Want to use R6 as stack pointer
e So that our PUSH/POP routines still work

When switching from User mode to Supervisor mode
(as result of interrupt), save R6 to Saved.USP

Invoking the Service Routine - The Details

1.

& o0k 0N

P

If Priv = 1 (user),
Saved.USP = R6, then R6 = Saved.SSP. -

Push PSR and PC to Supervisor Stack.

Set PSR[15] = 0 (supervisor mode).

Set PSR[10:8] = priority of interrupt being serviced.
Set PSR[2:0] = 0.

Set MAR = x01vv, where vv = 8-bit interrupt vector
provided by interrupting device (e.g., keyboard = x80).

Load memory location (M[x01vv]) into MDR.
Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

Returning from Interrupt

Special instruction — RTI - that restores state.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 i 0

RTI 1 00000000000O0O0GO0O0

1. Pop PC from supervisor stack. (PC = M[R6]; R6 = R6 + 1)
2. Pop PSR from supervisor stack. (PSR = M[R6]; R6 = R6 + 1)

3. If PSR[15] =1, R6 = Saved.USP.
(If going back to user mode, need to restore User Stack Pointer.)

RTI is a privileged instruction.
e Can only be executed in Supervisor Mode
e If executed in User Mode, causes an exception

Example

Saved.SSP

Iy

1111

11117

Iy

| 1111

PC| x3006

x3006|,

Program A

ADD

ISR for
Device B

x6202| AND

x6210| RTI x6300

X6315

Executing ADD at location x3006 when Device B interrupts

Executing AND at x6202 when Device C interrupts.

ISR for
Device C

RTI

Example (2)

Program A ISR for
Device B
X6 —
111111 /OQ |
//////“ x3006| ADD =
R6—| %3007 :

PSR for A . 6210/ RTT
111111

PC| x6200

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to

Device B service routine (at x6200).
e —

Example (3)

1111

1111

6—| x3007

PC

PSR for A

11177

x6203

Executing AND at x6202 when Device C interrupts.

x3006

Program A

ADD

X6

6202

X6210

ISR for
Device B

—>

AND

RTI

Example (4)

Program A ISR for
Device B
X6 —>
6—| %6203
6202 | AND —
PSR for B «3006| ADD it | ISR for
%3007 Device C
PSR for A x6210 RTI X63001=>
[111]]
PC| x6300
x6315| RTI

Push PSR and PC onto stack, then transfer to
Device C service routine (at x6300).

Example (5)

6 —

PC

Program A ISR for .
Device. B
' X6 —>
x6203 \
6202| AND —
PSR for B «3006| ADD —_— ; S| ISR f
x3007 : | o
| \ Device C
PSR for A x6210 RTI \ x6300[~>
[11111]
X6203
x6315]RTI

Execute RTI at x6315; pop PC and PSR from stack.

Example (6) usER SUYERV (S0

3 . B -

Program A ISR for
Saved.SSP Sl
X6 —>
x6203
6202| AND —
PSR for B %3006| ADD - — A ISR for
%3007 | - Lo \ Device C
PSR for A x—m RTI \ X6300[=>
= [/
PC| x3007
x6315| RTI

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

Exception: Internal Interrupt

When something unexpected happens
inside the processor, it may cause an exception

Examples:
e Privileged operation (e.g., RTl in user mode)
e Executing an illegal opcode
e Divide by zero
e Accessing an illegal address (e.g., protected system memory)

——e—>

Handled just like an interrupt
e Vector is determined internally by type of exception
e Priority is the same as running program

LC-3 Memory Map (Fig. A.1)

x0000

XOOFF
x0100

x01 FF
x0200

x2FFF
x3000

xFDFF
XFEQO .

xFFFF

Trap Vector Table

Interrupt Vector Table

Operating system and
Supervisor Stack

¥

Available for
user programs

Device register addresses

State Diagram for Interrupt Processing

Vector<-INTV
& PSR[10:8]<—Priority
MDR<-PSR
. » [PSR[15])
MAR<-SP AT BEN<-IR<11>-N+IR<10>Z+IR<9>-P °
[PSR([15]] [R15:12]]
Saved_USP<-SP
S N MV e
36 44 =

MDR<-M Vector<-x00 &
e | e, et
PSR[15]<-0
38
Vector<-x01
PC<-MDR To4s MDR<-PSR

PSR[15}<-0
[PSR[15])

To37 To4s

] Saved_SSP<—SP
[Nothing J(SP«Saved_USPJ

} ! :
To18 To18 PC<-MDR

To18

LC-3 Interrupt Structure (Fig. C.8)

GateMARMUX

REG
16 Als ey Yol i
; 7 FLE
LD.REG—o]
3 | SR2 SR1 3
: SR2
[zexT] : —4#& OUT DUT [¢~ SR
[7:0].
r‘ 2 ADDRIMUX
I © ADDR2MUX s 2 o
is Ais
(10:0] ‘ 0
U
(8:0)
w2
(5:0]
r—_l
feal 1SEXT| ; i
tF——{sexT }———— : ‘ x
f ‘\ ALU | rD{SM“S"IE"ZI Snvvdssp}<)—1
¢) - LD.SavedusP | | LD.SavedssP
nterrupt 3
i e 6 Aie fie Als
P 3
C’H . riority

<G—MIOEN ’_‘Wv"‘l MIOEN Tipur [77 T JOUTRUT
y

[ADDR. CTL.
MEMORY LOGIC

MEM.Eh)Q—I;e L e il iy -f-- Lot]

|
l

INMUXK' |

