28. Review Dec. 10, 2018

° Algorithms

* Using building blocks

° Binary system

« Conversion between binary and decimal
* Sign extension and overflow

e Other bases

pEVIEW SESSION
eEC, 16 CSOMDA\D 700 PM - —
(Here) EER 15Tk

TA office HouRsS (EXTM)

MNON . DEC. s
EERL oL 2-5 PR
oo -

Converting Decimal to Binary (2’s C)

First Method: Division
1. Find magnitude of decimal number. (Always positive.)
2. Divide by two - remainder is least significant bit.
3. Keep dividing by two until answer is zero,
writing remainders from right to left.

4. Append a zero as the MS bit;
if original number was negative, take two’s complement.

X = 104, 104/2 = 5210 bit0
52/2.= 2610 bitl
26/2 = 1310 bit2
1372 = 6rl bit3
6/2 = 310 bit4
32 = 1rl bit5
X =01101000,,, 12 = 0rl bit6

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s
complement to get a positive number.

2. Add powers of 2 that have “1” in the 2"
corresponding bit positions. 1
3. If original number was negative, i

add a minus sign.

©

32
64
128
256
512
1024

X = 01101000,
= 26425423 = 64+32+8
= 104

N
O(DOO\IChU‘!thI-IO|3

ten

Assuming 8-bit 2's complement numbers.

Sign Extension

To add two numbers, we must represent them
with the same number of bits.

If we just pad with zeroes on the left:

4-bit 8-bit
0100 ¥ 00000100 (still 4)
1100 (-4) 00001100 (12, not-4)

Instead, replicate the MS bit -- the sign bit:

4-bit 8-bit
0100 (4@ 00000100 (still 4)
1100 (-4) 11111100 (still -4)

Overflow

If operands are too big, then sum cannot be represented
as an n-bit 2’s comp number.

01000 (s) 11000 (-8
+ 01001 (9) +10111 (-9)
10001 (-15) 01111 (+15)

We have overflow if:
» signs of both operands are the same, and
* sign of sum is different.

Another test -- easy for hardware:
* carry into MS bit does not equal carry out

Lamost <igmIFICAND

Examples of Logical Operations

AND USEFUL AS “MASKS” 11000101
 useful for clearing bits AND 00001111
> AND with =0 YY1
> AND x:th :::: no change 00000101
OR
 useful for setting bits 11000101
> OR with zero = no change OR 00001111
>OR with one =1 11001111
NOT
« unary operation -- one argument NOT 11000101
e flips every bit 00111010

Converting from Binary to Hexadecimal

Every four bits is a hex digit.
e start grouping from right-hand side

011101010001111010011010111

S
3 7

A 8 F 4 D

This is not a new machine representation,
just a convenient way to write the number.

Fractions: Fixed-Point

How can we represent fractions?

« Use a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”

» 2's comp addition and subtraction still work.
> if binary points are aligned

21=05
22=0.25
23=0.125

00101000.101 (40.625)

+ 11111110.110 (-1.25)
00100111.011 (39.375)

No new operations -- same as integer arithmetic. J

Very Large and Very Small: Floating-Point
Large values: 6.023 x 102 -- requires 79 bits
Small values: 6.626 x 103 -- requires >110 bits

Use equivalent of “scientific notation”: F x 2
Need to represent F (fraction), E (exponent), and sign.
IEEE 754 Floating-Point Standard (32-bits):

1h 8b 23b

‘ S ‘Exponent! Fraction
N=(-1)%x1.fraction x2%Pn1-127 1 <exponent<254
N=(-1)°%0. fraction x2 %, exponent=0

Floating Point Example

Single-precision IEEE floating point number:
10111111010000000000000000000000
T

sign exponent frac

* Sign is 1 - number is negative.
¢ Exponent field is 01111110 = 126 (decimal).
¢ Fraction is 0.100000000000... = 0.5 (decimal).

Value = -1.5 x 2@26-127) = .15 x 21 = -0.75.

IEEE 754 Floating Point Standard

Single Precision .
= \A(DD<“J

1h 8b I 23b
E’Exponent‘ Fraction

> N=(-1)%x1.fraction x2¢®"n-127 "1 <exponent <254
N=(~1)%x0.fraction x2'%, exponent=0

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.
 both printable and non-printable (ESC, DEL, ...) characters

00 nul/10 dle|20 sp(30 0 |40 @ [50 P |60 " (70 p
01 soh{11dc1j21 ! (31 1 (41 A|51 Q|61 a |71 q
02 stx|12dc2j22 " [32 2|42 B |52 R|[62 b |72 r
03 etx[13 dc3|23 # |33 3 (43 C|53 S |63 c |73 s
04 eot|14 dc4|24 $ (34 4 |44 D |54 T |64 d |74 t
05 eng[15 nak|25 % |35 5 (45 E |55 U |65 e |75 u
06 ack|16 syn|26 & [36 6 |46 F |56 V 66 T |76 v
07 bel|17 etb|27 ' |37 7 (47 G |57 W |67 g |77 w
08 bs|18 can/28 ([38 8 (48 H |58 X |68 h |78 x
09 ht|19 em|29) |39 9 (49 I |59 Y |69 i|79 y
Oa nl|lasubj2a * [3a : |4a J|5a Z|6a j |7a z
Ob vt|lbesc|2b + |3b ; [4b K|5b [|6b k |7b {
Oc np|lc fs|2c , [3c < |4c L |5c \ |6c 1 |7c |
0d cr|ld gs|2d - [3d =|4d M |5d] [6d m|7d }
Oe sofle rs|2e . [3e > [4e N |5e "~ |6e n [7e ~
of si|1f us|2f / |3f ? [4f 0 |5f _ |6f o [7f del

| |

g Mos. e
> TRANSISTORS To GATES

wﬁ

~<chon V\e

e

n-cre nne

—_—

NAND Gate (AND-NOT)

W'_C‘
0 \\ |
A4 \

L 1

G

Note: Parallel structure on top, serial on bottom.

TIENDICRS 1E §=)\}Exp\p\g(g; Y- corasiens 1F G=0V

§aive s (hodie of
¢ : SooReE N e
D DRMN LIKE A S04 C\Q\

NoR ChTE
——-—-

(oR-N0T)

A —)

»—4

\/ &

A

AND Gate

Add inverter to NAND.

Basic Logic Gates

A—I>O—-K

NOT

D 1
- - ﬂ

”I

%

NAND

DeMorgan's Law
Converting AND to OR (with some help from NOT)
Consider the following gate:

(xy = %

——

Logical Completeness
Can implement ANY truth table with AND, OR, NOT.

A

B OO O O

|

PR

B

o O + |(»r O O

o

C

r O B |O +»r O

= O

A B C

Al »—AB
: To convert AND to OR
AB|Z 3| 4B| 4B (or vice versa),
001 1| 1 0 invert inputs and output.
01|11 O 0 1
1 0|0 1 0 1
1 1|0 of o 1
j\

1. AND combinations

that yield a "1" in the
truth table.

2. OR the results
of the AND gates.

More than 2 Inputs?

ANDIOR can take any number of inputs.
* AND =1 if all inputs are 1.
¢ OR=1ifany inputis 1.
o Similar for NAND/NOR.

Can implement with multiple two-input gates,
or with single CMOS circuit.

A
B ABC
C

Decoder

n inputs, 2" outputs
o exactly one output is 1 for each possible input pattern

A ﬂ 1, if AB=00
B
‘D— 1, if AB=01
2-bit
decoder _QID—' _
1, ifAB=10

Multiplexer (MUX)

n-bit selector and 2" inputs, one output
- output equals one of the inputs, depending on selector

S
Se

ABCD

4-to-1 MUX

fRioR\TY ENCGDER

Four-bit Adder

A D

5 |

A, if S=00

B, if S=01

C,if S=10

D, if =11

Full Adder

A B C,|S Cu
00 0|0 O
00 1|1 O

010]|1 0 T T
01 1|0 1
10 0|1 O
10 1|0 1
11 0|0 1
11 1111 1

out

A, B, A, B
| | [
A B A B
Full ©. Full ¢
Adder Adder
C. S G, s
S, S,

Programmable Logic Array

S

W@C’ A p: oo
—4
C

?
[%

111

Connactions

|

jada
-

Gated D-Latch

Two inputs: D (data) and WE (write enable)
+ when WE = 1, latch is set to value of D
»S =NOT(D), R=D
o when WE = 0, latch holds previous value
>S=R=1

D

WE

(o]

):S
)R out

R-S Latch: Simple Storage Element

IV
S 2 out e
t } 9Q\\?\J,J’\i
o] 1
R b 10 ©
ap A&
S out
I Y
o=
R
>D' | B N
— ;/CD(}'L‘D(/;){
| —
Register
D3 Dl DO
WE [[[|
Q, Q, Q,

22 x 3 Memory

[aadresst—1 & we] TPV

write /K:Edv ! : 1
il ol %
D=] I

T A Rl &
1 T T
TR Fr R
o CHCHCH
E Q, '

State Diagram
Shows states and

actions that cause a transition between states.

other tha
R-13

n

State Machine

Another type of sequential circuit
+ Combines combinational logic with storage

* “Remembers” state, and changes output (and state)
based on inputs and current state

State Machine

Inputs Combinational Outputs

Logic Circuit

Storage

Elements

Storage: Master-Slave Flipflop

A pair of gated D-latches,

to isolate next state from current state.

To

Combinational _:
Logic Circuit

Latch B

rom
Combinational
Logic Circuit

Latch A

4{>°_

Clock

During 1 phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2" phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

<

LC-3 Data Path ““""“i

Combinational
Logic <

Storage

2lem sm| o
out _out [+

State Machine

