- Algorithms
- Using building blocks
- Binary system
- Conversion between binary and decimal
- · Sign extension and overflow
- Other bases

Converting Decimal to Binary (2's C)

First Method: Division

- 1. Find magnitude of decimal number. (Always positive.)
- 2. Divide by two remainder is least significant bit.
- 3. Keep dividing by two until answer is zero, writing remainders from right to left.
- 4. Append a zero as the MS bit; if original number was negative, take two's complement.

$X = 104_{ten}$	104/2 =	52 r0	bit 0
	52/2 =	26 r0	bit 1
	26/2 =	13 r0	bit 2
	13/2 =	6 r1	bit 3
	6/2 =	3 r0	bit 4
	3/2 =	1 r1	bit 5
$X = 01101000_{two}$	1/2 =	0 r1	bit 6

Converting Binary (2's C) to Decimal

- 1. If leading bit is one, take two's complement to get a positive number.
- 2. Add powers of 2 that have "1" in the corresponding bit positions.
- 3. If original number was negative, add a minus sign.

$$X = 01101000_{two}$$

$$= 2^{6}+2^{5}+2^{3} = 64+32+8$$

$$= 104_{ten}$$

Assuming 8-bit 2's complement numbers.

1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Sign Extension

To add two numbers, we must represent them with the same number of bits.

If we just pad with zeroes on the left:

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	00001100	(12, not -4)

Instead, replicate the MS bit -- the sign bit:

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	11111100	(still -4)

Overflow

If operands are too big, then sum cannot be represented as an n-bit 2's comp number.

We have overflow if:

- · signs of both operands are the same, and
- · sign of sum is different.

Another test -- easy for hardware:

· carry into MS bit does not equal carry out

Converting from Binary to Hexadecimal

Every four bits is a hex digit.

· start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

Examples of Logical Operations

AND USEFUL AS "MASKS" • useful for clearing bits ➤ AND with zero = 0 ➤ AND with one = no change	AND	11000101 00001111 00000101
OR • useful for setting bits ➤ OR with zero = no change ➤ OR with one = 1	OR	11000101 00001111 11001111
NOT unary operation one argument flips every bit	NOT	11000101 00111010

Fractions: Fixed-Point

How can we represent fractions?

- Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
- 2's comp addition and subtraction still work.
 - > if binary points are aligned

No new operations -- same as integer arithmetic.

Very Large and Very Small: Floating-Point

Large values: 6.023×10^{23} -- requires 79 bits Small values: 6.626×10^{-34} -- requires >110 bits

Use equivalent of "scientific notation": F x 2^E Need to represent F (*fraction*), E (*exponent*), and sign. IEEE 754 Floating-Point Standard (32-bits):

 $N=(-1)^S \times 1$.fraction $\times 2^{\text{exponent}-127}$, $1 \le \text{exponent} \le 254$ $N=(-1)^S \times 0$.fraction $\times 2^{-126}$, exponent=0

Floating Point Example

- Sign is 1 number is negative.
- Exponent field is 01111110 = 126 (decimal).
- Fraction is 0.10000000000... = 0.5 (decimal).

Value = -1.5 x $2^{(126-127)}$ = -1.5 x 2^{-1} = -0.75.

IEEE 754 Floating Point Standard

 $N=(-1)^S\times 1.$ fraction $\times 2^{\text{exponent}-127}$, $1\leq \text{exponent}\leq 254$ $N=(-1)^S\times 0.$ fraction $\times 2^{-126}$, exponent=0

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

• both printable and non-printable (ESC, DEL, ...) characters

```
00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 01 soh 11 dcl 21 ! 31 1 41 A 51 Q 61
00 nut 10 dtc 20 1,
01 soh 11 dc1 21 !
                                                    31 1 41 A 51

32 2 42 B 52

33 3 43 C 53

34 4 44 D 54

35 5 45 E 55

36 6 46 F 56

37 7 47 G 57

38 8 48 H 58

39 9 49 I 58

30 3 43 F 58
 02 stx 12 dc2 22
                                                                                                     R
                                                                                                             62
                                                                                                                       b
                                                                                          53 S
54 T
 03 etx 13 dc3 23 #
                                                                                                                                73
74
                                                                                                            63
04 eot 14 dc4 24 $ 34
05 enq 15 nak 25 $ 35
06 ack 16 syn 26 & 36
07 bel 17 etb 27 ' 37
                                                                                                              64
                                                                                          55 U
                                                                                                             65 e
                                                                                                             66
 07 bel 17 etb 27
 08 bs 18 can 28
                                               (
09 ht 19 em 29 ) 39
0a nl 1a sub 2a * 3a
0b vt 1b esc 2b + 3b
                                                                                                             69
09 ht 19 em 29 ) 39 9 49 1 59 Y 69 1 79 y
0a nl la sub 2a * 3a : 4a J 5a Z 6a j 7a Z
0b vt lb esc 2b + 3b ; 4b K 5b [ 6b k 7b {
0c np lc fs 2c , 3c < 4c L 5c \ 6c l 7c l
0d cr ld gs 2d - 3d = 4d M 5d ] 6d m 7d }
0e so le rs 2e . 3e > 4e N 5e ^ 6e n 7e ~
0f si lf us 2f / 3f ? 4f 0 5f _ 6f o 7f de
```


DeMorgan's Law

Converting AND to OR (with some help from NOT) Consider the following gate:

$$(X+Y) = \overline{X} \cdot \overline{Y}$$

To convert AND to OR (or vice versa), invert inputs and output.

More than 2 Inputs?

AND/OR can take any number of inputs.

- AND = 1 if all inputs are 1.
- OR = 1 if any input is 1.
- Similar for NAND/NOR.

Can implement with multiple two-input gates, or with single CMOS circuit.

Logical Completeness

Can implement ANY truth table with AND, OR, NOT.

Decoder

n inputs, 2ⁿ outputs

• exactly one output is 1 for each possible input pattern

Multiplexer (MUX)

n-bit selector and 2^n inputs, one output

output equals one of the inputs, depending on selector

Full Adder

Α	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Four-bit Adder

Programmable Logic Array

R-S Latch: Simple Storage Element

Gated D-Latch

Two inputs: D (data) and WE (write enable)

- when WE = 1, latch is set to value of D
 S = NOT(D), R = D
- when WE = 0, latch holds previous value
 S = R = 1

Register

22 x 3 Memory

State Machine

Another type of sequential circuit

- · Combines combinational logic with storage
- "Remembers" state, and changes output (and state) based on inputs and current state

State Diagram

Shows states and actions that cause a transition between states.

Storage: Master-Slave Flipflop

A pair of gated D-latches, to isolate *next* state from *current* state.

During 1st phase (clock=1), previously-computed state becomes *current* state and is sent to the logic circuit. During 2nd phase (clock=0), next state, computed by logic circuit, is stored in Latch A.

