
Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 1

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

1

Verification of SoC Designs

• Simulation-based techniques

• Formal analysis

• Dealing with state explosion

• Verification of embedded software

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

2

Verification versus Test

Specification

Hardware

Design

Manufacture

Implementation

Hardware/Software

Verification

Test

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 2

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

3

Verification Effort

• Verification portion of design increases to

anywhere from 50 to 80% of total

development effort for the design.

Code Verify (30 ~ 40%)� Synthesis P&R

Code Verify (50 ~ 80%)� Synthesis P&R

1996
300K gates

2000
1M SoC

Verification methodology manual, 2000-
TransEDA

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

4

Percentage of Total Flaws

• About 50% of flaws are functional flaws.

– Need verification method to fix logical &
functional flaws

From Mentor presentation material, 2003
Clocking

5%

Race

5%

Power

4%

Other

9%

Yield

7%

Noise

12%
Slow Path

13%

Logical/

Functional

45%

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 3

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

5

Verification Approaches

Simulation

Hardware
Accelerated
Simulation

Emulation

Formal
Verification

Semi-formal
Verification

PrototypingFaster speed, closer to final productFaster speed, closer to final productFaster speed, closer to final productFaster speed, closer to final product
Bigger coverageBigger coverageBigger coverageBigger coverageBasicBasicBasicBasicverificationverificationverificationverificationtooltooltooltool

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

6

HW/SW Co-Design
• Concurrent design of HW/SW components

• Evaluate the effect of a design decision at

early stage by “virtual prototyping”

• Co-verification

HW
SW

Integration

HW

SW

time time

HW

SW

Integration

iteration

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 4

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

7

Verification Options

• Simulation Technologies

• Equivalence Checking

• Formal Analysis (Model Checking)�

• Physical Verification and Analysis

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

8

Simulation Technologies
• Event-based Simulators

• Cycle-based Simulators

• Transaction-based Simulators

• Code Coverage

• HW/SW Co-verification

• Emulation Systems

• Rapid Prototyping Systems

• Hardware Accelerators

• AMS Simulation

• Numerical Simulation (MATLAB)�

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 5

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

9

Static Technologies

• “Lint” Checking

– Syntactic correctness

– Identifies simple errors

• Static Timing Verification

– Setup, hold, delay timing requirements

– Challenging: multiple sources

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

10

Formal Techniques
• Theorem Proving Techniques

– Proof-based

– Not fully automatic

• Formal Model Checking
– Model-based

– Automatic

• Formal Equivalence Checking
– Reference design �� modified design

– RTL-RTL, RTL-Gate, Gate-Gate
implementations

– No timing verification

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 6

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

11

Physical Verification & Analysis

Issues for physical verification:

• Timing

• Signal Integrity

• Crosstalk

• IR drop

• Electro-migration

• Power analysis

• Process antenna effects

• Phase shift mask

• Optical proximity correction

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

12

Top-Down SoC Verification

v
e
rific

a
tio
n

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 7

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

13

Bottom-Up SoC Verification

v
e
rific

a
tio
n

Components,
blocks, units

Memory map,
internal interconnect

Basic functionality,
external interconnect

System level

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

14

Platform Based SoC Verification

Derivative
Design

Interconnect
Verification
between:

� SoC Platform

� Newly added
IPs

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 8

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

15

System Interface-driven
SoC Verification

Besides Design-Under-Test,
all others are interface models

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

16

Traditional Testbench

• Problems of Traditional Testbench

– Real-World Stimuli

– System-Level Modeling

– High-Level Algorithmic Modeling

– Test Automation

– Source Coverage

Stimulus

Generator

Design
Under
Test

Response

Checking

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 9

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

17

“Bug” Introduction and Detection

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

18

Executable Specification

• Procedural Language for Behavioral Modeling

– Design Productivity

• Easy to model complex algorithm

• Fast execution

• Simple Testbench

– Tools

• Native C/C++ through PLI/FLI

• Extended C/C++ : SpecC, SystemC

• Verify it on the fly!

– Test vector generation

– Compare RTL Code with Behavioral Model

– Coverage Test

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 10

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

19

Property detection: to decide whether a
simulation run (trace) of a design satisfies a
given property

Property Detection

property
detection
moduleproperty

(specification) �

trace
(simulation run)� yes /

witness
no /
counterexample

e.g., violation of mutual exclusion, critical1 Æ critical2

Example: Properties written in PSL/Sugar

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

20

Specifying Properties (Assertions)

in Industry Tools

• Open Vera Assertions Language (Synopsys)�

• Property Specification Language (PSL) (IBM,
based on Sugar)�
• Accelera driving consortium

• IEEE Std. 1850-2005

• Accelera Open Verification Library (OVL)
provides ready to use assertion functions in
the form of VHDL and Verilog HDL libraries

• SystemVerilog is a next generation language,
added to the core Verilog HDL
– IEEE Std. 1800-2005

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 11

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

21

Formal Verification of SoCs

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

22

State Explosion!

10
3

1 10 100 1000 10000

1

10
3000

10
300

10
30

100000 1000000

Number of Storage Elements

N
u

m
b

e
r

o
f

S
ta

te
s

World population

Stars in the Universe

Protons in the Universe

Number of latches
in Itanium processor

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 12

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

23

Abstractions to Deal with Large

State Spaces

• Model checking models need to be made

smaller

• Problem: State-Space Explosion

• Smaller or “reduced” models must retain

information

– Property being checked should yield same
result

• Balancing solution: Abstractions

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

24

Program Transformation Based

Abstractions

• Abstractions on Kripke structures

– Cone of Influence (COI), Symmetry, Partial Order, etc.

– State transition graphs for even small programs can be

very large to build

• Abstractions on Program Text

– Scale well with program size

– High economic interest

Static Program Transformations

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 13

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

25

Types of Abstractions

• Sound

– Property holds in abstraction implies property
holds in the original program

• Complete

– Algorithm always finds an abstract program if it
exists

• Exact

– Property holds in the abstraction iff property

holds in the main program

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

26

Abstraction Landscape

Low
Automation

Medium

Automation

Data Abstractions

Abstract Interpretation
Low
Property Dependence

Medium

Property Dependence

Counterexample

Guided

Refinement techniques

SlicingSlicing

High

Property Dependence

High

Automation

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 14

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

27

Verification of challenging problems
with high level static analysis

Property checking

– High level symbolic simulation

• Symbolic simulation of antecedent

• Symbolic simulation of all CFG

nodes

– Domain aware analysis

• Function-wise case splitting

– Decision procedure

• Model checker

• RTL abstraction technique

• Applied to LTL formulas

•G(a =>c) �

• Theoretically complex, practically

effective

• USB 2.0 protocol verification

Antecedent
Conditioned Slicing

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

28

Program Slicing

• Program transformation involving statement

deletion

• “Relevant statements” determined

according to slicing criterion

• Slice construction is completely automatic

• Correctness is property specific

– Loss of generality

• Abstractions are sound and complete

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 15

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

29

Specialized Slicing Techniques

• Static slicing produces large slices

– Has been used for verification

– Semantically equivalent to COI reductions

• Slicing criterion can be enhanced to

produce other types of slices

– Amorphous Slicing

– Conditioned Slicing

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

30

Conditioned Slicing

• Slices constructed with respect to set of

possible input states

• Characterized by first order, predicate logic

formula

• Augments static slicing by introducing

condition

– <C, I, V>

– Constrains the program according to condition
C

• Canfora et al

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 16

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

31

Example Program

begin

1: read(N);

2: A = 1;
3: if (N < 0) {

4: B = f(A);

5: C = g(A);
6: } else if (N > 0) {

7: B = f’(A);

8: C = g’(A);
} else {

9: B = f’’(A);
10: C = g’’(A);

}

11: print(B);
12: print(C);

end

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

32

Example Program: Static Slicing

wrt <11, B>

begin

1: read(N);

2: A = 1;
3: if (N < 0) {

4: B = f(A);

5: C = g(A);
6: } else if (N > 0) {

7: B = f’(A);

8: C = g’(A);

} else {

9: B = f’’(A);
10: C = g’’(A);

}

11: print(B);

12: print(C);

end

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 17

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

33

Example Program:

Conditioned Slicing wrt

<(N<0),11, B>
begin

1: read(N);

2: A = 1;
3: if (N < 0) {

4: B = f(A);

5: C = g(A);
6: } else if (N > 0) {

7: B = f’(A);

8: C = g’(A);
} else {

9: B = f’’(A);
10: C = g’’(A);

}

11: print(B);
12: print(C);

end

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

34

Verification Using Conditioned Slicing

• Slicing part of design irrelevant to property being
verified

• Safety Properties of the form
– G (antecedent => consequent)�

• Use antecedent to specify states we are
interested in

We do not need to preserve program

executions where the antecedent is false

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 18

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

35

Property checking:
antecedent conditioned slicing

h: G (A => C)�

Antecedent Consequent
Xn C

if (A)�
C = 1;

else

C = 0;

Static

slicing on

A, C

if (A)�
C = 1;

else
C = 0;

if (A)�
C = 1;

else

C = 0;

Antecedent

conditioned

slicing on

<A= true>, A, C

if (A)�
C = 1;

else

C = 0;

Semantic analysis

Variable

dependency

analysis

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

36

Example of antecedent conditioned slicing

always @ (clk) begin

case(insn)�

f_add: dec = d_add;
f_sub: dec = d_sub;

f_and: dec = d_and;

f_or: dec = d_or;

endcase
end

always @ (clk) begin

case(ex)�

e_add: res = a+b;

e_sub: res = a-b;

e_and: res = a&b;

e_or: res = a|b;

endcase

end

always @ (clk) begin

case(dec)�

d_add: ex = e_add;

d_sub: ex = e_sub;

d_and: ex = e_and;

d_or: ex = e_or;

endcase

end

h = [G((insn == f_add) ⇒ XX(res == a+b))]

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 19

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

37

dec = d_add dec = d_and dec = d_ordec = d_sub

insn?

f_add

f_sub f_and

f_or

ex = e_add ex = e_and ex = e_orex = e_sub

dec?

d_add

d_sub d_and

d_or

res = a + b res = a & b res = a | bres = a - b

ex?

e_add

e_sub e_and

e_or

TRUE

FALSE

Example contd.

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

38

Checking the truth of the antecedent

(insn == f_add) �

Antecedent
symbolic expression

Symbolic simulation
of a node in CFG

dec(t+1) = ITE((insn==f_add)(t)^

~(insn == f_sub)(t)^

~(insn == f_and)(t)^

~(insn == f_or),

d_add(t), dec(t))

(dec = d_add) �

T

Node retained

T: Retained
X: Retained
F: Not retained

RewriterRewriter

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 20

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

39

Complexity of Antecedent Conditioned Slicing

• Symbolic simulation of all nodes in each process

• Expression computation over all processes in the
program
– Handles global predicates

• Symbolic simulation of the antecedent

• Looking forward in time
– Depends on n in (A => XnC) �

• Decision procedure for checking truth of antecedent
– Could be arbitrarily hard

• Path traversal of all processes
– Pruning non-retained nodes

• Worst case: retain all nodes

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

40

Correctness of Antecedent
Conditioned Slicing

Theorem: An LTL formula h of the type, where h is

G(a => c)�

G (a => X=n c) �

G (a => F<= k c)�

holds on the original program iff it holds on the antecedent conditioned slice.

Proof intuition:

For a Kripke structure of the slice, all states satisfy a=>c.

These include states of the original Kripke structure that satisfy a.

Thus all states of the original that satisfy a must satisfy h.

All states of the original that satisy ¬a, satisfy a=>c vacuously.

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 21

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

41

Example of Antecedent Conditioned Slicing

always @ (clk) begin

case(insn)�

f_add: dec = d_add;

endcase

end

always @ (clk) begin

case(ex)�

e_add: res = a+b;

endcase

end

always @ (clk) begin

case(dec)�

d_add: ex = e_add;

endcase

end

h = [G((insn == f_add) ⇒ XX(res == a+b))]

Single instruction behavior for f_add instruction

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

42

Experimental Results

• Verilog RTL implementation of USB 2.0
function core

• Properties taken from specification
document
– Safety properties expressed in LTL

– Mostly control based, state machine related

• Used Cadence SMV-BMC
– Circuit too big for SMV

– Used a bound of 24

• 450 MHz, Ultra Sparc dual processor with 1
GB RAM

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 22

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

Results on USB G(a=>c)Properties

CPU Seconds, 450 MHz dual UltraSPARC-II with 1 GB RAM

P1 P2 P3 P4 P5 P6 P7 P8 P9
0

20

40

60

80

100

120

140

160

180

200

Original

Static Slicing

Conditioned Slicing

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

Results of Antecedent
Conditioned Slicing

• Temporal property verification for USB 2.0

• Safety properties of the form

– G(a => Xc)

– G(a => a Us c)

• Liveness Properties

– G(a => Fc)

• USB has many interacting state machines

– Approximately 1033 states

• Bound of 50

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 23

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

Example Properties of the USB
• G((crc5err) V ¬(match) => ¬(send_token))

– If a packet with a bad CRC5 is received, or there is an
endpoint field mismatch, the token is ignored

• G((state == SPEED_NEG_FS) => X((mode_hs) ^
(T1_gt_3_0ms) => (next_state == RES_SUSPEND))

– If the machine is in the speed negotiation state, then in
the next clock cycle, if it is in high speed mode for
more than 3 ms, it will go to the suspend state

• G((state == RESUME_WAIT) ^ ¬(idle_cnt_clr) =>F(state ==
NORMAL))

– If the machine is waiting to resume operation and a
counter is set, eventually (after 100 mS) it will return to
normal operation

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

Results on Temporal USB Properties

0

100

200

300

400

500

600

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Original

Static Slicing

Conditioned Slicing

CPU Seconds, 450 MHz dual UltraSPARC-II with 1 GB RAM

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 24

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

47

Verification of challenging problems
with high level static analysis

– Antecedent conditioned slicing

– Domain aware analysis

• Instruction wise case splitting

– Decision procedure

• Model checker

• Reason with the entire state of the

machine (Burch and Dill) �

• Enhancements use theorem

proving techniques

–Significant manual component

–Construct complicated invariants

–High-level model based

Automatic techniques do not
scale to instruction level
verification

Pipelined
Processor
Verification

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

48

Single instruction verification

• Obtain single instruction machine by
antecedent conditioned slicing

– Antecedent is instruction word

• Property is G (I => R) where

– I = i1 ^ Xi2 ^ XXi3…Xnin
• it represents the antecedent in pipeline stage t

– R is the result of I in terms of its target register

values

fetch decode exec

Model checking of instruction I

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 25

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

49

i1

i1

i1

i1

i1

i2

i2i3i4i5i6

i3 i2

i3

i2

i2

i3i4

i4

i5

F D E M W Register

File
write to register file

Non-target

Register

Target

Register

Interaction between instructions

Lemma: Instructions should write back only
to target register only on writeback stage

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

50

Notion of processor correctness

fetch decode exec

Model checking of l.sll

fetch decode exec

Model checking of l.xor

fetch decode exec

Model checking of l.sub

fetch decode exec

Model checking of l.mulu

fetch decode exec

Model checking of l.addc

Memory

and

Register

file

Conflict

free

writeback

lemma

Single

Instruction

Slices

Control logic

lemmas

model checked

Theorem: The instruction slices, when executed in
the same sequence as the corresponding instructions
in the original pipelined machine, will produce the
same result as the original pipeline

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 26

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

51

Results of OR1200 verification

DNF30094159.64l.cmovBRANCH

DNF3107354.09l.jalrBRANCH

DNF3196957.36l.jBRANCH

DNF46350139.47l.bnfBRANCH

DNF44281132.63l.bfBRANCH

DNF2280126.63l.muluMAC

DNF4983125.28l.mulMAC

DNF2276124.01l.orALU

DNF2172723.28l.andALU

DNF2483124.84l.xorALU

DNF1965821.6l.addiALU

DNF2401824.7l.subALU

DNF2379625.65l.addALU

SMV
Time(s)

UNSLICED

Memory
usage
(KB)�

SMV
Time(s)
SLICEDInsnClass

• OpenRISC 1200

• 32-bit scalar RISC

processor

• 5 stage integer

pipeline

• Publicly available

• Intended for

portable/embedded

applications

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

52

Results of OR1200 verification

DNF48627212.27l.mtsprSPRS

DNF50696226.97l.mfsprSPRS

DNF2691927.93l.rorSHF/ROT

DNF2486527.83l.srlSHF/ROT

DNF2377126.81l.sllSHF/ROT

DNF3094138.32l.sdLSU

DNF2910433.91l.lwsLSU

DNF6311235.85l.ldLSU

DNF53801194.43l.sfgtCOMPARE

DNF51731183.01l.sfneCOMPARE

DNF30004157.29l.sfeqCOMPARE

SMV
Time(s)

UNSLICED
Memory
(KB)�

SMV
Time(s)
SLICEDInsnClass • 3GHz Pentium4

• 1GB RAM

• Bolstered use of

several Boolean

level engines

– Model checkers,

SAT, BDD

based engines

All instructions of a pipelined processor were verified

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 27

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

53

Verification of challenging problems
with high level static analysis

Sequential equivalence
checking

– High level symbolic simulation

of RTL implementation

– High level symbolic simulation
of System level spec

– Domain aware analysis

• Sequential compare points

obtained using heuristics

– Decision procedure

• SAT solver

SoC Verification

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

Term Rewriting for Arithmetic Circuit

Checking

• Significant success with RTL Term level
reductions

• Verification of arithmetic circuits at the RTL
level using term rewriting

• RTL to RTL equivalence checking

• Verified large multiplier designs like Booth,
Wallace Tree and many optimized multipliers
using this rewriting technique

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 28

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

Term Rewriting Systems: Example

• Terms: GCD(x,y)

• Rewrite rules:

– GCD(x,y)) GCD(y,x) if x > y, y ≠ 0

– GCD(x,y)) GCD(x,y-x) if x · y, y ≠ 0

• Initial term: GCD(initX, initY)

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

VERIFIRE
• Dedicated Arithmetic Circuit Checker

• Vtrans: Translates Verilog designs to Term
Rewriting Systems

• Vprover: Proves equivalence of Term
Rewriting Systems
– Iterative engine

– Returns error trace if proof not found

– Maintains an expanding rule base for expression
minimization

– Incomplete, but efficient engine

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 29

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

Results on Multipliers

UnfinishedUnfinished60s64 X 64

UnfinishedUnfinished40s32 X 32

Unfinished Unfinished25s16 X 16

16s18s18s8 X 8

9s10s14s4 X 4

Commercial Tool

2

Commercial

Tool 1

VERIFIREWallace Tree

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

58

System Level Equivalence Checking

• Sequential equivalence checking

– Verifying two models with different state encodings

• System specifications as system level model (SLM)

– Higher level of abstraction

– Timing aware models

• Design concept in RTL needs checking

– Retiming, power, area modifications

– Every change requires verification against SLM

• Simulation of SLM

– Tedious to develop

– Inordinately long running times

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 30

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

59

Equivalence Checking Using
Sequential Compare Points

• Variables of interest (observables) obtained from
user/block diagram

– Primary outputs / Relevant intermediate variables

• Symbolic expressions obtained for observables
assigned in a given cycle (high level symbolic
simulation)�

• Introduce notion of sequential compare points

– Identification with respect to relative position in time

– Identification with respect to space (data or variables)�

• Symbolic expressions compared at sequential compare
points

• Comparison using a SAT solver in this work

– Other Boolean level engines can also be used

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

60

Algorithm
M: System level model

V: RTL model

O: list of observables

Construct the control flow

graph for both M and V

For all sequential compare points C

Obtain Proof

If satisfiable

Error Trace

If not satisfiable

Compute symbolic expression at

sequential compare point C using

high level symbolic simulation

for both M and V

Check equivalence of

symbolic expressions

at sequential compare point C

using a SAT solver

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 31

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

61

Correctness theorem

Theorem:

Let two systems M and V such that, PI(M) = PI(V) and PO(M) = PO(V) = PO.

Let n be the longest cycle length taken to obtain all primary outputs in both systems.

Let M and V be compared at every point C = (t,d) such that t <= n.

Let ~c be the simulation relation that denotes the symbolic expression equality at C.

Then, for all C, V ~c M => V ~POM.

Proof intuition:
The base case is at time t=0, at initial state.

The induction hypothesis is relieved using a lemma that proves that

at any cycle t, if the two systems have

the same value for the symbolic expression of all variables d,

~c holds at that cycle.
If all primary outputs are generated by cycle n, the relation holds.

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

62

Viterbi Decoder: SystemC Specification

1

2

3

4

5

6

7

8

Input

Stream

Metrics

Update

Punct

Table

T
rellis S

tates
F

F
 B

u
ffer

Butterfly32

Butterfly31

Butterfly2

Butterfly1

Traceback

Mem

Which Data are Valid

Control when to Update

Clock

F
F

 B
u

ffer

FF[7:0] .. FF[31:0]

T
rellis S

tates

TM[63:0] .. TM[31:0]

Out[31:0]

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 32

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

63

Viterbi Decoder Implementation 1

1

2

3

4

5

6

7

8

Input

Stream

Metrics

Update

Punct

Table

T
rellis S

tates
F

F
 B

u
ffer

Butterfly32

Butterfly31

Butterfly2

Butterfly1

Traceback

Mem

Which Data are Valid

Control when to Update

Clock

Stage1 Stage 2

FF[7:0] .. FF[31:0]

TM[63:0] .. TM[31:0]

Out[31:0]

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

64

≡

Cycle t

MDs[1:0][31:0]

MDv[1:0][31:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2
≡

Cycle t-1

bmds[63:0]

bmdv[63:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

FFs[7]

FFv[7]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-3

FFs[6]

FFv[6]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-4

FFs[5]

FFv[5]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-5

FFs[4]

FFv[4]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-6

FFs[3]

FFv[3]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-7

FFs[2]

FFv[2]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-8

FFs[1]

FFv[1]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-9

FFs[0]

FFv[0]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t

TMs[63:0]

TMv[63:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2
≡

Cycle t-1

btms[63:0]

btmv[63:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

Decomposition of Equivalence Checking

between SystemC and Implementation - 1

Proof of FF Buffer (8 cycles) �

Proof of Trellis Computation (2 cycles) � Proof of Matdec DecisionTable (2 cycles) �

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 33

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

65

1

2

3

4

5

6

7

8

Input

Stream Metrics

Update

Update

Every 8

cycles

T
rellis S

tates
F

F
 B

u
ffer

Butterfly8

Butterfly7

Butterfly2

Butterfly1

Traceback

Mem

Viterbi Decoder Implementation 2

Clock

Stage1 Stage 2

Wait

another

8 cyles

to update

Relocate

& Mux

FF[7:0] .. FF[31:0]

TM[63:0] .. TM[31:0]

Out[31:0]

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

66

Decomposition of Equivalence Checking

between SystemC and Implementation - 2

≡

Cycle t-8

FFs[7]

FFv[7]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-9

FFs[6]

FFv[6]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-10

FFs[5]

FFv[5]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-11

FFs[4]

FFv[4]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-12

FFs[3]

FFv[3]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-13

FFs[2]

FFv[2]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-14

FFs[1]

FFv[1]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-15

FFs[0]

FFv[0]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t

TMs[63:48]

TMv[63:48]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-1

btms[63:48]

btmv[63:48]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

TMs[47:32]

TMv[47:32]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-3

btms[47:32]

btmv[47:32]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-4

TMs[31:16]

TMv[31:16]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-5

btms[31:16]

btmv[31:16]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-6

TMs[15:0]

TMv[15:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-7

btms[15:0]

btmv[15:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

ButterflyPipe0

ButterflyPipe1

ButterflyPipe2

ButterflyPipe3

≡

Cycle t

MDs[31:24]

MDv[31:24]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-1

bmds[55:48]

bmdv[55:48]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

MDs[23:16]

MDv[23:16]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-3

bmds[39:32]

bmsv[39:32]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-4

MDs[15:8]

MDv[15:8]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-5

bmds[23:16]

bmdv[23:16]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-6

MDs[7:0]

MDv[7:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-7

bmds[7:0]

bmdv[7:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

ButterflyPipe0

ButterflyPipe1

ButterflyPipe2

ButterflyPipe3

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

Proof of FF Buffer (8 cycles) �
Proof of Trellis Computation (2 cycles) �Proof of Matdec DecisionTable (2 cycles) �

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 34

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

67

Results of using a SAT solver

1792MatDec per
butterfly

896MatDec each stage
of butterfly

57344Trellis per
butterfly

28672Trellis computation
in each stage of

butterfly

14336Trellis Condition in
the butterfly

32LESSTHAN

448PLUS

Number of clauses
in the CNF formula

Block/Function

1892352Monolithic Trellis

Number of
clauses in the
CNF formula

Design

RTL
decomposition
(Design 1)�

59136

RTL
decomposition
(Design 2)�

59136

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

68

Results

66128Trellis
(decomposed) �

21122304Trellis (monolithic)�

66128Butterfly

264PLUS

Number of
symbolic variables

generated

Number of
variables

Block/Function

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 35

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

69

Verifying Embedded Software

• Software Testing

– Execute software for test cases

– Analogous to simulation in hardware

• Testing Criteria

– Coverage measures

• Formal analysis of software

– Model Checking

– Theorem Proving

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

70

Path Testing

• Assumption: bugs affect the control flow

• Execute all possible control flow paths

through the program

– Attempt 100% path coverage

• Execute all statements in program at least

once

– 100% statement coverage

• Exercise every branch alternative during test

– Attempt 100% branch coverage

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 36

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

71

Software Verification

• Formal analysis of code

• Result, if obtained, is guaranteed for all

possible inputs and all possible states

• Example of software model checker:

SPIN

• Problem: applicable only to small modules

) State Explosion

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

72

Data Abstractions

• Abstract data information

– Typically manual abstractions

• Infinite behavior of system abstracted

– Each variable replaced by abstract domain
variable

– Each operation replaced by abstract domain
operation

• Data independent Systems

– Data values do not affect computation

– Datapath entirely abstracted

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 37

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

73

Data Abstractions: Examples

• Arithmetic operations
– Congruence modulo an integer

• k replaced by k mod m

• High orders of magnitude
– Logarithmic values instead of actual data value

• Bitwise logical operations
– Large bit vector to single bit value

• Parity generator

• Cumbersome enumeration of data values
– Symbolic values of data

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

74

Abstract Interpretation

• Abstraction function mapping concrete

domain values to abstract domain values

• Over-approximation of program behavior

– Every execution corresponds to abstract

execution

• Abstract semantics constructed once,

manually

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 38

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

75

Abstract Interpretation: Examples

• Sign abstraction
– Replace integers by their sign

• Each integer K replaced by one of {> 0, < 0, =0}

• Interval Abstraction
– Approximates integers by maximal and minimal

values
• Counter variable i replaced by lower and upper limits

of loop

• Relational Abstraction
– Retain relationship between sets of data values

• Set of integers replaced by their convex hull

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

76

Counterexample Guided Refinement

• Approximation on set of states
– Initial state to bad path

• Successive refinement of approximation
– Forward or backward passes

• Process repeated until fixpoint is reached
– Empty resulting set of states implies property proved

– Otherwise, counterexample is found

• Counterexample can be spurious because of
over-approximations

• Heuristics used to determine spuriousness of
counterexamples

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 39

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

77

Counterexample Guided Refinement

• Predicate Abstraction

– Predicates related to property being verified
(User defined)�

– Theorem provers compute the abstract
program

– Spurious counterexamples determined by
symbolic algorithms

– Some techniques use error traces to identify

relevant predicates

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

78

Counterexample Guided Refinement

• Lazy Abstraction

– More efficient algorithm

– Abstraction is done on-the-fly

– Minimal information necessary to validate a
property is maintained

• Abstract state where counterexample fails is “pivot

state”

• Refinement is done only “from the pivot state on”

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 40

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

79

Specialized Slicing for Verification

• Amorphous Slicing

– Static slicing preserves syntax of program

– Amorphous Slicing does not follow syntax
preservation

– Semantic property of the slice is retained

– Uses rewriting rules for program transformation

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

80

Example of Amorphous Slicing

begin
i = start;
while (i <= (start + num))�

{
result = K + f(i);
sum = sum + result;
i = i + 1;
}

end

LTL Property: G sum > K
Slicing Criterion: (end, {sum, K})�

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 41

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

81

Example of Amorphous Slicing

Amorphous Slice:

begin
sum = sum + K + f(start);
sum = sum + K + f(start + num);

end

Program Transformation rules applied

• Induction variable elimination

• Dependent assignment removal

• Amorphous Slice takes a fraction of the time as the real
slice on SPIN

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

82

Amorphous Slicing for Verification

• Similar to term rewriting

– Used by theorem provers for deductive
verification

• What is different?

– Theorem provers try to prove entirely by
rewriting

– Hybrid approach

• Rewriting only part of the program, based on slicing

criterion

• Model checking the sliced program

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 42

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

83

Conditioned Slicing

• Theoretical bridge between static and

dynamic slicing

• Conditioned Slices specify initial state in

criterion

– Constructed with respect to set of possible
inputs

– Characterized by first order predicate formula

• Yields much smaller slices than static slices

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

84

Example Results – Conditioned Slicing

• Group Address Registration Protocol

(GARP) and X.509 authentication protocol

• SPIN model checker

– Memory limit of 512 MB given

– Max search depth of 220 steps

• All properties were in the form

Antecedent => Consequent

Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 43

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

85

Experimental Results

Property
Proved

Conditioned

Sliced

Unsliced*Property

Yes10.23117.81P5

Yes1.95154.96P4

Yes8.41145.36P3

Yes8.44145.78P2

Yes1.7291.65P1

*Static slicing in SPIN was enabled

