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Verification of SoC Designs

• Simulation-based techniques

• Formal analysis

• Dealing with state explosion

• Verification of embedded software
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Verification Effort

• Verification portion of design increases to 

anywhere from 50 to 80% of total 

development effort for the design.

Code Verify (30 ~ 40%)� Synthesis P&R

Code Verify (50 ~ 80%)� Synthesis P&R

1996
300K gates

2000
1M SoC

Verification methodology manual, 2000-
TransEDA
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Percentage of Total Flaws

• About 50% of flaws are functional flaws.

– Need verification method to fix logical & 
functional flaws

From Mentor presentation material, 2003
Clocking
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Verification Approaches

Simulation

Hardware
Accelerated
Simulation

Emulation

Formal
Verification

Semi-formal
Verification

PrototypingFaster speed, closer to final productFaster speed, closer to final productFaster speed, closer to final productFaster speed, closer to final product
Bigger coverageBigger coverageBigger coverageBigger coverageBasicBasicBasicBasicverificationverificationverificationverificationtooltooltooltool
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HW/SW Co-Design
• Concurrent design of HW/SW components

• Evaluate the effect of a design decision at 

early stage by “virtual prototyping”

• Co-verification

HW
SW

Integration

HW

SW

time time

HW

SW

Integration

iteration
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Verification Options

• Simulation Technologies

• Equivalence Checking

• Formal Analysis (Model Checking)�

• Physical Verification and Analysis
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Simulation Technologies
• Event-based Simulators

• Cycle-based Simulators

• Transaction-based Simulators

• Code Coverage

• HW/SW Co-verification

• Emulation Systems

• Rapid Prototyping Systems

• Hardware Accelerators

• AMS Simulation

• Numerical Simulation (MATLAB)�
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Static Technologies

• “Lint” Checking

– Syntactic correctness

– Identifies simple errors

• Static Timing Verification

– Setup, hold, delay timing requirements

– Challenging: multiple sources
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Formal Techniques
• Theorem Proving Techniques

– Proof-based

– Not fully automatic

• Formal Model Checking
– Model-based

– Automatic

• Formal Equivalence Checking
– Reference design �� modified design

– RTL-RTL, RTL-Gate, Gate-Gate 
implementations

– No timing verification
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Physical Verification & Analysis

Issues for physical verification:

• Timing

• Signal Integrity

• Crosstalk

• IR drop

• Electro-migration

• Power analysis

• Process antenna effects

• Phase shift mask

• Optical proximity correction
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Top-Down SoC Verification

v
e
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a
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Bottom-Up SoC Verification

v
e
rific

a
tio
n

Components, 
blocks, units

Memory map, 
internal interconnect

Basic functionality, 
external interconnect

System level
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Platform Based SoC Verification

Derivative 
Design

Interconnect 
Verification 
between: 

� SoC Platform

� Newly added 
IPs
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System Interface-driven 
SoC Verification

Besides Design-Under-Test, 
all others are interface models
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Traditional Testbench

• Problems of Traditional Testbench

– Real-World Stimuli

– System-Level Modeling

– High-Level Algorithmic Modeling

– Test Automation

– Source Coverage

Stimulus

Generator

Design
Under
Test

Response

Checking
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“Bug” Introduction and Detection
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Executable Specification

• Procedural Language for Behavioral Modeling

– Design Productivity

• Easy to model complex algorithm

• Fast execution

• Simple Testbench

– Tools

• Native C/C++ through PLI/FLI

• Extended C/C++ : SpecC, SystemC

• Verify it on the fly!

– Test vector generation

– Compare RTL Code with Behavioral Model

– Coverage Test
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Property detection: to decide whether a 
simulation run (trace) of a design satisfies a 
given property

Property Detection

property 
detection
moduleproperty

(specification) �

trace
(simulation run)� yes / 

witness
no /
counterexample

e.g., violation of mutual exclusion, critical1 Æ critical2

Example: Properties written in PSL/Sugar
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Specifying Properties (Assertions)

in Industry Tools

• Open Vera Assertions Language (Synopsys)�

• Property Specification Language (PSL) (IBM, 
based on Sugar)�
• Accelera driving consortium

• IEEE Std. 1850-2005

• Accelera Open Verification Library (OVL) 
provides ready to use assertion functions in 
the form of VHDL and Verilog HDL libraries

• SystemVerilog is a next generation language, 
added to the core Verilog HDL
– IEEE Std. 1800-2005



Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 11

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

21

Formal Verification of SoCs
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State Explosion!
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Abstractions to Deal with Large

State Spaces

• Model checking models need to be made 

smaller

• Problem: State-Space Explosion

• Smaller or “reduced” models must retain 

information

– Property being checked should yield same 
result

• Balancing solution: Abstractions 
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Program Transformation Based 

Abstractions

• Abstractions on Kripke structures

– Cone of Influence (COI), Symmetry, Partial Order, etc.

– State transition graphs for even small programs can be 

very large to build

• Abstractions on Program Text

– Scale well with program size

– High economic interest

Static Program Transformations
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Types of Abstractions

• Sound

– Property holds in abstraction implies property 
holds in the original program

• Complete

– Algorithm always finds an abstract program if it 
exists

• Exact

– Property holds in the abstraction iff property 

holds in the main program
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Abstraction Landscape

Low 
Automation 

Medium

Automation

Data Abstractions

Abstract Interpretation
Low 
Property Dependence

Medium

Property Dependence

Counterexample 

Guided

Refinement techniques

SlicingSlicing

High

Property Dependence

High

Automation
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Verification of challenging problems 
with high level static analysis

Property checking 

– High level symbolic simulation 

• Symbolic simulation of antecedent

• Symbolic simulation of all CFG 

nodes

– Domain aware analysis

• Function-wise case splitting

– Decision procedure

• Model checker

• RTL abstraction technique

• Applied to LTL formulas 

•G(a =>c) �

• Theoretically complex, practically 

effective

• USB 2.0 protocol verification

Antecedent
Conditioned Slicing
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Program Slicing

• Program transformation involving statement 

deletion

• “Relevant statements” determined 

according to slicing criterion

• Slice construction is completely automatic

• Correctness is property specific 

– Loss of generality

• Abstractions are sound and complete



Verification of SoC Designs
Fall 2010

November 13, 2010

UT Austin, ECE Department 15

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham Verification of SoC Designs

29

Specialized Slicing Techniques

• Static slicing produces large slices

– Has been used for verification

– Semantically equivalent to COI reductions

• Slicing criterion can be enhanced to 

produce other types of slices

– Amorphous Slicing

– Conditioned Slicing
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Conditioned Slicing

• Slices constructed with respect to set of 

possible input states

• Characterized by first order, predicate logic 

formula

• Augments static slicing by introducing 

condition

– <C, I, V>

– Constrains the program according to condition 
C

• Canfora et al
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Example Program

begin

1:  read(N);

2: A = 1;
3: if (N < 0) {

4: B = f(A);

5: C = g(A);
6: } else if (N > 0) {

7: B = f’(A);

8: C = g’(A);
} else {

9: B = f’’(A);
10: C = g’’(A);

}

11: print(B);
12: print(C);

end
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Example Program: Static Slicing

wrt <11, B>

begin

1:  read(N);

2: A = 1;
3: if (N < 0) {

4: B = f(A);

5: C = g(A);
6: } else if (N > 0) {

7: B = f’(A);

8: C = g’(A);

} else {

9: B = f’’(A);
10: C = g’’(A);

}

11: print(B);

12: print(C);

end
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Example Program: 

Conditioned Slicing wrt 

<(N<0),11, B>
begin

1:  read(N);

2: A = 1;
3: if (N < 0) {

4: B = f(A);

5: C = g(A);
6: } else if (N > 0) {

7: B = f’(A);

8: C = g’(A);
} else {

9: B = f’’(A);
10: C = g’’(A);

}

11: print(B);
12: print(C);

end
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Verification Using Conditioned Slicing

• Slicing part of design irrelevant to property being 
verified

• Safety Properties of the form
– G (antecedent => consequent)�

• Use antecedent to specify states we are 
interested in 

We do not need to preserve program

executions where the antecedent is false
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Property checking: 
antecedent conditioned slicing

h: G (A => C)�

Antecedent Consequent
Xn C

if (A)�
C = 1;

else

C = 0;

Static 

slicing on 

A, C

if (A)�
C = 1;

else
C = 0; 

if (A)�
C = 1;

else

C = 0;

Antecedent 

conditioned 

slicing  on 

<A= true>, A, C

if (A)�
C = 1;

else

C = 0;

Semantic analysis

Variable

dependency

analysis
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Example of antecedent conditioned slicing

always @ (clk) begin

case(insn)�

f_add:    dec = d_add;
f_sub:    dec = d_sub;

f_and:    dec = d_and;

f_or:       dec = d_or;

endcase
end

always @ (clk) begin

case(ex)�

e_add:    res = a+b;

e_sub:    res = a-b;

e_and:    res = a&b;

e_or:       res = a|b;

endcase

end

always @ (clk) begin

case(dec)�

d_add:    ex = e_add;

d_sub:    ex = e_sub;

d_and:    ex = e_and;

d_or:       ex = e_or;

endcase

end

h = [G((insn == f_add) ⇒ XX(res == a+b))]
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dec = d_add dec = d_and dec = d_ordec = d_sub

insn?

f_add

f_sub f_and

f_or

ex = e_add ex = e_and ex = e_orex = e_sub

dec?

d_add

d_sub d_and

d_or

res = a + b res = a & b res = a | bres = a - b

ex?

e_add

e_sub e_and

e_or

TRUE

FALSE

Example contd.
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Checking the truth of the antecedent

(insn == f_add) �

Antecedent 
symbolic expression

Symbolic simulation
of a node in CFG

dec(t+1) = ITE( (insn==f_add)(t)^ 

~(insn == f_sub)(t)^ 

~(insn == f_and)(t)^ 

~(insn == f_or), 

d_add(t), dec(t)) 

(dec = d_add) �

T

Node retained

T: Retained
X: Retained
F: Not retained

RewriterRewriter
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Complexity of Antecedent Conditioned Slicing

• Symbolic simulation of all nodes in each process

• Expression computation over all processes in the 
program
– Handles global predicates

• Symbolic simulation of the antecedent 

• Looking forward in time
– Depends on n in (A => XnC) �

• Decision procedure for checking truth of antecedent
– Could be arbitrarily hard

• Path traversal of all processes
– Pruning non-retained nodes

• Worst case: retain all nodes
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Correctness of Antecedent 
Conditioned Slicing

Theorem: An LTL formula h of the type, where h is 

G(a => c)�

G (a => X=n c) �

G (a => F<= k c)�

holds on the original program iff it holds on the antecedent conditioned slice.

Proof intuition: 

For a Kripke structure of the slice, all states satisfy a=>c.

These include states of the original Kripke structure that satisfy a. 

Thus all states of the original that satisfy a must satisfy h. 

All states of the original that satisy ¬a, satisfy a=>c vacuously. 
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Example of Antecedent Conditioned Slicing

always @ (clk) begin

case(insn)�

f_add:    dec = d_add;

endcase

end

always @ (clk) begin

case(ex)�

e_add:    res = a+b;

endcase

end

always @ (clk) begin

case(dec)�

d_add:    ex = e_add;

endcase

end

h = [G((insn == f_add) ⇒ XX(res == a+b))]

Single instruction behavior for f_add instruction
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Experimental Results

• Verilog RTL implementation of USB 2.0 
function core

• Properties taken from specification 
document
– Safety properties expressed in LTL

– Mostly control based, state machine related

• Used Cadence SMV-BMC
– Circuit too big for SMV

– Used a bound of 24

• 450 MHz, Ultra Sparc dual processor with 1 
GB RAM
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Results on USB G(a=>c)Properties 

CPU Seconds, 450 MHz dual UltraSPARC-II with 1 GB RAM  
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Results of Antecedent 
Conditioned Slicing

• Temporal property verification for USB 2.0

• Safety properties of the form

– G(a => Xc)

– G(a => a Us c)

• Liveness Properties

– G(a => Fc)

• USB has many interacting state machines

– Approximately 1033 states

• Bound of 50 
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Example Properties of the USB
• G((crc5err) V ¬(match) => ¬(send_token))

– If a packet with a bad CRC5 is received, or there is an 
endpoint field mismatch, the token is ignored

• G((state == SPEED_NEG_FS) => X((mode_hs) ^ 
(T1_gt_3_0ms) => (next_state == RES_SUSPEND))

– If  the machine is in the speed negotiation state, then in 
the next clock cycle, if it is in high speed mode for 
more than 3 ms, it will go to the suspend state

• G((state == RESUME_WAIT) ^ ¬(idle_cnt_clr) =>F(state == 
NORMAL))

– If the machine is waiting to resume operation and a 
counter is set, eventually (after 100 mS) it will return to 
normal operation

SoC Design - ICS, Fall 2010
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Results on Temporal USB Properties 
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Verification of challenging problems 
with high level static analysis

– Antecedent conditioned slicing 

– Domain aware analysis

• Instruction wise case splitting

– Decision procedure

• Model checker

• Reason with the entire state of the 

machine (Burch and Dill) �

• Enhancements use theorem 

proving techniques

–Significant manual component 

–Construct complicated invariants

–High-level model based

Automatic techniques do not 
scale to instruction level 
verification

Pipelined
Processor
Verification
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Single instruction verification

• Obtain single instruction machine by 
antecedent conditioned slicing

– Antecedent is instruction word

• Property is G (I => R) where

– I = i1 ^ Xi2 ^ XXi3…Xnin
• it represents the antecedent in pipeline stage t

– R is the result of I in terms of its target register 

values

fetch decode exec

Model checking of instruction  I
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i1

i1

i1

i1

i1

i2

i2i3i4i5i6

i3 i2

i3

i2

i2

i3i4

i4

i5

F D E M W Register

File
write to register file

Non-target

Register

Target

Register

Interaction between instructions

Lemma: Instructions should write back only 
to target register only on writeback stage
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Notion of processor correctness

fetch decode exec

Model checking of    l.sll

fetch decode exec

Model checking of l.xor

fetch decode exec

Model checking of l.sub

fetch decode exec

Model checking of l.mulu

fetch decode exec

Model checking of  l.addc

Memory

and

Register

file

Conflict

free 

writeback

lemma

Single

Instruction

Slices

Control logic

lemmas

model checked

Theorem: The instruction slices, when executed in 
the same sequence as the corresponding instructions 
in the original pipelined machine, will produce the 
same result as the original pipeline
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Results of OR1200 verification

DNF30094159.64l.cmovBRANCH

DNF3107354.09l.jalrBRANCH

DNF3196957.36l.jBRANCH

DNF46350139.47l.bnfBRANCH

DNF44281132.63l.bfBRANCH

DNF2280126.63l.muluMAC

DNF4983125.28l.mulMAC

DNF2276124.01l.orALU

DNF2172723.28l.andALU

DNF2483124.84l.xorALU

DNF1965821.6l.addiALU

DNF2401824.7l.subALU

DNF2379625.65l.addALU

SMV 
Time(s) 

UNSLICED

Memory 
usage 
(KB)�

SMV 
Time(s) 
SLICEDInsnClass

• OpenRISC 1200

• 32-bit scalar RISC 

processor

• 5 stage integer 

pipeline

• Publicly available

• Intended for 

portable/embedded  

applications 
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Results of OR1200 verification

DNF48627212.27l.mtsprSPRS

DNF50696226.97l.mfsprSPRS

DNF2691927.93l.rorSHF/ROT

DNF2486527.83l.srlSHF/ROT

DNF2377126.81l.sllSHF/ROT

DNF3094138.32l.sdLSU

DNF2910433.91l.lwsLSU

DNF6311235.85l.ldLSU

DNF53801194.43l.sfgtCOMPARE

DNF51731183.01l.sfneCOMPARE

DNF30004157.29l.sfeqCOMPARE

SMV 
Time(s) 

UNSLICED
Memory 
(KB)�

SMV 
Time(s) 
SLICEDInsnClass • 3GHz Pentium4

• 1GB RAM

• Bolstered use of 

several Boolean 

level engines

– Model checkers, 

SAT, BDD 

based engines

All instructions of a pipelined processor were verified
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Verification of challenging problems 
with high level static analysis

Sequential equivalence 
checking

– High level symbolic simulation 

of RTL implementation 

– High level symbolic simulation 
of System level spec

– Domain aware analysis

• Sequential compare points 

obtained using heuristics 

– Decision procedure

• SAT solver

SoC Verification

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

Term Rewriting for Arithmetic Circuit 

Checking

• Significant success with RTL Term level 
reductions

• Verification of arithmetic circuits at the RTL 
level using term rewriting

• RTL to RTL equivalence checking

• Verified large multiplier designs like Booth, 
Wallace Tree and many optimized multipliers 
using this rewriting technique 
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Term Rewriting Systems: Example

• Terms: GCD(x,y)

• Rewrite rules:

– GCD(x,y) ) GCD(y,x)       if x > y, y ≠ 0

– GCD(x,y) ) GCD(x,y-x)    if x · y, y ≠ 0

• Initial term: GCD(initX, initY)

SoC Design - ICS, Fall 2010

November 13, 2010
J. A. Abraham

VERIFIRE
• Dedicated Arithmetic Circuit Checker

• Vtrans: Translates Verilog designs to Term 
Rewriting Systems

• Vprover: Proves equivalence of Term 
Rewriting Systems
– Iterative engine

– Returns error trace if proof not found

– Maintains an expanding rule base for expression 
minimization

– Incomplete, but efficient engine
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Results on Multipliers

UnfinishedUnfinished60s64 X 64

UnfinishedUnfinished40s32 X 32

Unfinished Unfinished25s16 X 16

16s18s18s8 X 8 

9s10s14s4 X 4

Commercial Tool 

2

Commercial 

Tool 1

VERIFIREWallace Tree
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System Level Equivalence Checking

• Sequential equivalence checking

– Verifying two models with different state encodings

• System specifications as system level model (SLM) 

– Higher level of abstraction 

– Timing aware models

• Design concept in RTL needs checking

– Retiming, power, area modifications

– Every change requires verification against SLM

• Simulation of SLM

– Tedious to develop

– Inordinately long running times
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Equivalence Checking Using 
Sequential Compare Points

• Variables of interest (observables) obtained from 
user/block diagram

– Primary outputs / Relevant intermediate variables

• Symbolic expressions obtained for observables 
assigned in a given cycle (high level symbolic 
simulation)�

• Introduce notion of sequential compare points

– Identification with respect to relative position in time

– Identification with respect to space (data or variables)�

• Symbolic expressions compared at sequential compare 
points

• Comparison using a SAT solver in this work

– Other Boolean level engines can also be used
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Algorithm 
M: System level model

V: RTL model

O: list of observables

Construct the control flow

graph for both M and V

For all sequential compare points C

Obtain Proof

If satisfiable

Error Trace

If not satisfiable

Compute symbolic expression at

sequential compare point C using 

high level symbolic simulation 

for both M and V

Check equivalence of 

symbolic expressions

at sequential compare point C

using a SAT solver
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Correctness theorem

Theorem: 

Let two systems M and V such that, PI(M) = PI(V) and PO(M) = PO(V) = PO. 

Let n be the longest cycle length taken to obtain all primary outputs in both systems. 

Let M and V be compared at every point C = (t,d) such that t <= n. 

Let ~c be the simulation relation that denotes the symbolic expression equality at C. 

Then, for all C, V ~c M => V ~POM.

Proof intuition: 
The base case is at time t=0, at initial state. 

The induction hypothesis is relieved using a lemma that proves that 

at any cycle t, if the two systems have 

the same value for the symbolic expression of all variables d, 

~c holds at that cycle. 
If all primary outputs are generated by cycle n, the relation holds.
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Viterbi Decoder: SystemC Specification
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Viterbi Decoder Implementation 1

1
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Input 
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≡

Cycle t

MDs[1:0][31:0]

MDv[1:0][31:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2
≡

Cycle t-1

bmds[63:0]

bmdv[63:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

FFs[7]

FFv[7]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-3

FFs[6]

FFv[6]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-4

FFs[5]

FFv[5]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-5

FFs[4]

FFv[4]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-6

FFs[3]

FFv[3]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-7

FFs[2]

FFv[2]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-8

FFs[1]

FFv[1]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-9

FFs[0]

FFv[0]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t

TMs[63:0]

TMv[63:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2
≡

Cycle t-1

btms[63:0]

btmv[63:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

Decomposition of Equivalence Checking 

between SystemC and Implementation - 1

Proof of FF Buffer (8 cycles) �

Proof of Trellis Computation (2 cycles) � Proof of Matdec DecisionTable (2 cycles) �
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Decomposition of Equivalence Checking 

between SystemC and Implementation - 2

≡

Cycle t-8

FFs[7]

FFv[7]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-9

FFs[6]

FFv[6]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-10

FFs[5]

FFv[5]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-11

FFs[4]

FFv[4]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-12

FFs[3]

FFv[3]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-13

FFs[2]

FFv[2]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-14

FFs[1]

FFv[1]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t-15

FFs[0]

FFv[0]

GetMetricSet
SysC

RTL
GetMetricSet

≡

Cycle t

TMs[63:48]

TMv[63:48]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-1

btms[63:48]

btmv[63:48]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

TMs[47:32]

TMv[47:32]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-3

btms[47:32]

btmv[47:32]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-4

TMs[31:16]

TMv[31:16]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-5

btms[31:16]

btmv[31:16]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-6

TMs[15:0]

TMv[15:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-7

btms[15:0]

btmv[15:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

ButterflyPipe0

ButterflyPipe1

ButterflyPipe2

ButterflyPipe3

≡

Cycle t

MDs[31:24]

MDv[31:24]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-1

bmds[55:48]

bmdv[55:48]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-2

MDs[23:16]

MDv[23:16]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-3

bmds[39:32]

bmsv[39:32]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-4

MDs[15:8]

MDv[15:8]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-5

bmds[23:16]

bmdv[23:16]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

≡

Cycle t-6

MDs[7:0]

MDv[7:0]

Butterfly_Stage2
SysC

RTL
Butterfly_Stage2

≡

Cycle t-7

bmds[7:0]

bmdv[7:0]

Butterfly_Stage1
SysC

RTL
Butterfly_Stage1

ButterflyPipe0

ButterflyPipe1

ButterflyPipe2

ButterflyPipe3

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

{0,1}

Proof of FF Buffer (8 cycles) �
Proof of Trellis Computation (2 cycles) �Proof of Matdec DecisionTable (2 cycles) �
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Results of using a SAT solver

1792MatDec per 
butterfly

896MatDec each stage 
of butterfly

57344Trellis per 
butterfly

28672Trellis computation 
in each stage of 

butterfly

14336Trellis Condition in 
the butterfly

32LESSTHAN

448PLUS

Number of clauses 
in the CNF formula

Block/Function

1892352Monolithic Trellis

Number of 
clauses in the 
CNF formula

Design

RTL 
decomposition 
(Design 1)�

59136

RTL 
decomposition 
(Design 2)�

59136
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Results

66128Trellis 
(decomposed) �

21122304Trellis (monolithic)�

66128Butterfly

264PLUS

Number of 
symbolic variables 

generated

Number of 
variables

Block/Function
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Verifying Embedded Software

• Software Testing

– Execute software for test cases

– Analogous to simulation in hardware

• Testing Criteria

– Coverage measures

• Formal analysis of software

– Model Checking

– Theorem Proving
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Path Testing

• Assumption: bugs affect the control flow

• Execute all possible control flow paths 

through the program

– Attempt 100% path coverage

• Execute all statements in program at least 

once

– 100% statement coverage

• Exercise every branch alternative during test

– Attempt 100% branch coverage
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Software Verification

• Formal analysis of code

• Result, if obtained, is guaranteed for all 

possible inputs and all possible states

• Example of software model checker:

SPIN

• Problem: applicable only to small modules

) State Explosion
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Data Abstractions

• Abstract data information

– Typically manual abstractions

• Infinite behavior of system abstracted

– Each variable replaced by abstract domain 
variable

– Each operation replaced by abstract domain 
operation

• Data independent Systems

– Data values do not affect computation

– Datapath entirely abstracted
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Data Abstractions: Examples

• Arithmetic operations
– Congruence modulo an integer

• k replaced by k mod m

• High orders of magnitude
– Logarithmic values instead of actual data value

• Bitwise logical operations
– Large bit vector to single bit value

• Parity generator

• Cumbersome enumeration of data values
– Symbolic values of data
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Abstract Interpretation

• Abstraction function mapping concrete 

domain values to abstract domain values

• Over-approximation of program behavior

– Every execution corresponds to abstract 

execution 

• Abstract semantics constructed once, 

manually
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Abstract Interpretation: Examples

• Sign abstraction
– Replace integers by their sign

• Each integer K replaced by one of {> 0, < 0, =0}

• Interval Abstraction
– Approximates integers by maximal and minimal 

values
• Counter variable i replaced by lower and upper limits 

of loop

• Relational Abstraction
– Retain relationship between sets of data values

• Set of integers replaced by their convex hull
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Counterexample Guided Refinement

• Approximation on set of states
– Initial state to bad path

• Successive refinement of approximation
– Forward or backward passes

• Process repeated until fixpoint is reached
– Empty resulting set of states implies property proved

– Otherwise, counterexample is found

• Counterexample can be spurious because of 
over-approximations

• Heuristics used to determine spuriousness of 
counterexamples
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Counterexample Guided Refinement

• Predicate Abstraction

– Predicates related to property being verified 
(User defined)�

– Theorem provers compute the abstract 
program

– Spurious counterexamples determined by 
symbolic algorithms

– Some techniques use error traces to identify 

relevant predicates
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Counterexample Guided Refinement

• Lazy Abstraction

– More efficient algorithm

– Abstraction is done on-the-fly

– Minimal information necessary to validate a 
property is maintained

• Abstract state where counterexample fails is “pivot 

state”

• Refinement is done only “from the pivot state on”
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Specialized Slicing for Verification

• Amorphous Slicing

– Static slicing preserves syntax of program

– Amorphous Slicing does not follow syntax 
preservation

– Semantic property of the slice is retained

– Uses rewriting rules for program transformation
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Example of Amorphous Slicing

begin
i = start;
while (i <= (start + num))�

{
result = K + f(i);
sum = sum + result;
i = i + 1;
}

end

LTL Property: G sum > K
Slicing Criterion: (end, {sum, K})�
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Example of Amorphous Slicing

Amorphous Slice: 

begin
sum = sum + K + f(start);
sum = sum + K + f(start + num);

end

Program Transformation rules applied

• Induction variable elimination

• Dependent assignment removal

• Amorphous Slice takes a fraction of the time as the real 
slice on SPIN
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Amorphous Slicing for Verification

• Similar to term rewriting

– Used by theorem provers for deductive 
verification

• What is different?

– Theorem provers try to prove entirely by 
rewriting

– Hybrid approach

• Rewriting only part of the program, based on slicing 

criterion

• Model checking the sliced program
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Conditioned Slicing 

• Theoretical bridge between static and 

dynamic slicing

• Conditioned Slices specify initial state in 

criterion

– Constructed with respect to set of possible 
inputs

– Characterized by first order predicate formula

• Yields much smaller slices than static slices
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Example Results – Conditioned Slicing

• Group Address Registration Protocol 

(GARP) and X.509 authentication protocol

• SPIN model checker

– Memory limit of 512 MB given 

– Max search depth of 220 steps

• All properties were in the form

Antecedent  => Consequent
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Experimental Results

Property 
Proved

Conditioned

Sliced 

Unsliced*Property

Yes10.23117.81P5

Yes1.95154.96P4

Yes8.41145.36P3

Yes8.44145.78P2

Yes1.7291.65P1

*Static slicing in SPIN was enabled


