
EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 1

EE382V-ICS:
System-on-a-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 8 - System Design Methodology

with sources from:
Christian Haubelt, Univ. of Erlangen-Nuremberg

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 2

SoC Design Flow

MRD

PRD

Map, Model &
Simulate in

SPW or Matlab or C
or C++

Mapping to
Platform or

Components
Complete?

Start

Modify
Model?

Analyze results

Metrics
Met?

Freeze
Architecture

MRD
Met?

Done

Analyze results

Functionality
Met?

System
BOM Costs

Met?

Power
Req. Met?

Schedule
Req. Met?

Platform
Req. Met?

Return

No

No

No

No

No

No

No

No

Yes
Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Design
Convergence and

Verification
Loop

Product
Validation

Loop

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 2

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 3

Design Convergence

Front End DesignFront End Design ImplementationImplementation

Rapid Exploration Rapid Traversal

O

p
ti

m
iz

at
io

n
 S

o
lu

ti
o

n
s

O

p
ti

m
iz

at
io

n
 S

o
lu

ti
o

n
s

Design ConvergesDesign Converges

Reduced convergence time due to minimal data Reduced convergence time due to minimal data

Convergence time increases due to more design data Convergence time increases due to more design data

Reduced convergence time due to reduced solution spaceReduced convergence time due to reduced solution space

Convergence time increases due to transition phase Convergence time increases due to transition phase

Reduced convergence time due to reduced solution spaceReduced convergence time due to reduced solution space

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 4

Design Challenges

Applications

Programming
Model?

• Complexity

• High degree of parallelism at
various levels

• Heterogeneity

• Of components

• Of tools

• Low-level communication
mechanisms

• Programming model

Source: C. Haubelt, Univ. of Erlangen-Nuremberg

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 3

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 5

Complexity Forces

Technology churn

Performance Throughput

Capacity

Availability

Security

Reliability

Functionality

Cost Compatibility

Robustness

“The challenge over the next 20 years will not be speed or cost or
performance; it will be a question of complexity.”

Bill Raduchel, Chief Strategy Officer, Sun Microsystems

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 6

Multi-Processor System-on-Chip (MPSoC)

Controller Bus

System
Memory

Local Bus

Local RAM

Bridge

Shared
RAM

DSP Bus

DSP RAM

Memory
Controller ASIP

DSP

Hardware
Accelerator

Micro-
Controller

Hardware
Accelerator

Video
Front End

Source: C. Haubelt, Univ. of Erlangen-Nuremberg

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 4

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 7

MPSoC Terminology

• Multi-processor

• Heterogeneous, asymmetric multi-processing (AMP)

• Distributed memory and operating system

• Multi-core

• Homogeneous, symmetric multi-processing (SMP)

• Shared memory and operating system

 Multi-core processors in a multi-processor system

• Many-core

• > 10 cores per processor…

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 8

Source: T. Noll, RWTH Aachen, via R. Leupers, “From ASIP to MPSoC”, Computer Engineering Colloquium, TU Delft, 2006

Processor Implementation Options

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 5

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 9

Lecture 8: Outline

 Introduction

• System design methodology

• Electronic system-level design (ESL/SLD)

• ESL design

• Modeling

• Synthesis

• Verification

• ESL landscape

• Summary and conclusions

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 10

System Design

System-level design

Hardware
development

Software
development

Integration &
Verification

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 6

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 11

system design

hardware
development

software
development

integration &
verification

Classical System Design Flow

(semi)automaticmanual

System requirement specification

System architecture design

Modeling

Hardware design

Software development

System

Integration & Verification

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 12

Hardware-Centric Design Cycle

Time

Task

Specification Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 7

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 13

Hardware-Centric Design Cycle

Time

Task

Specification Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification
✘

known if project is successful

✘

but you want to know here

✘

… and here

✘

… and here

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 14

system design

hardware
development

software
development

integration &
verification

Electronic System-Level (ESL) Design Flow

(semi)automaticmanual

System requirement specification

High-level model

Hardware design Software development

System implementation

Integration & Verification

System-level design

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 8

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 15

New ESL Design Cycle

Time

Task

Specification
(high-level & arch. models) Fixes in specification

HW design Fixes in hardware

HW verification

SW design Fixes in software

SW verification

Integration & verification

Find good design options here

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 16

system

component

logic

task

instruction
architecture

RTL

gate

Hardware

Arch

ISA

Software

Implementation

Specification

Double Roof Model

Source: A. Gerstlauer, C. Haubelt, A. Pimentel, et al., “Electronic System-Level Synthesis Methodologies,“ TCAD, 2009.

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 9

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 17

Design Methodologies

• Top down design
• Starts with functional system

specification
– Application behavior
– Models of Computation (MoC)

• Successive refinement
• Connect the hardware and

software design teams earlier in
the design cycle.

• Allows hardware and software to
be developed concurrently

• Goes through architectural
mapping

• The hardware and software parts
are either manually coded or
obtained by refinement from
higher model

• Ends with HW-SW co-verification
and System Integration

• Platform based design
• Starts with architecting a

processing platform for a given
vertical application space

– Semiconductor, ASSP vendors

• Enables rapid creation and
verification of sophisticated SoC
designs variants

• PBD uses predictable and pre-
verified firm and hard blocks

• PBD reduces overall time-to-
market

– Shorten verification time

• Provides higher productivity
through design reuse

• PBD allows derivative designs
with added functionality

• Allows the user to focus on the
part that differentiate his design

Source: Coware, Inc., 2005

 Set of models and design steps (transformations)

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 18

Top-Down ESL Design Environment

SL
Design

Function
Design

System
Def.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODING

INTEG.
& TEST

PROTOTYPING ENVIRONMENT
Primarily
Virtual

Primarily
Physical

HW & SW
CODESIGN

Cost Models

Copyright © 1995-1999 SCRA Used with Permission

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 10

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 19

Flow To Implementation

Platform-Based Design (PBD)

System
Behavior

System
Platform

Mapping

Refinement

Behavior
Verification

Architecture

Models of
Computation

Performance models:
Emb. SW, Comm.

and Comp. resources

HW/SW Partitioning,
Scheduling & Estimation

Synthesis
& Coding

Performance
Analysis

and Simulation

Source: UC Berkeley, EECS249

Model Checking

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 20

System Design Languages

• Netlists
• Structure only: components and connectivity
 Gate-level [EDIF], system-level [SPIRIT/XML]

• Hardware description languages (HDLs)
• Event-driven behavior: signals/wires, clocks
• Register-transfer level (RTL): boolean logic
 Discrete event [VHDL, Verilog]

• System-level design languages (SLDLs)
• Software behavior: sequential functionality/programs
 C-based [SpecC, SystemC, SystemVerilog]

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 11

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 21

Lecture 8: Outline

 Introduction

 System design flow

• ESL design

• Modeling

• Synthesis

• Verification

• ESL landscape

• Summary and conclusions

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 22

System Modeling

• Design models as abstraction of a design instance
• Representation for validation and analysis
• Specification for further implementation
 Documentation & specification

 Systematic modeling flow and methodology
• Set of models
• Set of design steps
 From specification to implementation

 Well-defined, rigorous system-level semantics
• Unambiguous, explicit abstractions, models

– Objects and composition rules

 Synthesis and verification

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 12

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 23

Modeling Guidelines

• A model should capture exactly the aspects required by
the system, and no more.

• There is not one model/algorithm/tool that fits all.

• Being formal is a prerequisite for algorithmic analysis.

• Formality means having a mathematical definition
(semantics) for the properties of interest.

• Being compositional is a prerequisite for scalability.

• Compositionality is the ability of breaking a task about A||B
into two subtasks about A and B, respectively.

Source: UC Berkeley, EECS249

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 24

Separation of Concerns

Managing
Complexity

OrthogonalizingOrthogonalizing
concernsconcerns
acrossacross

multiple levelsmultiple levels
of of

abstractionabstraction

Behavior
Vs.

Architecture

Computation
Vs.

Communication

Source: UC Berkeley, EECS249

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 13

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 25

System Design Flow

Computation

C
o

m
m

u
n

ic
at

io
n

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Timed functional model
C. Transaction-level model (TLM)
D. Bus cycle-accurate model (BCAM)
E. Computation cycle-accurate model (CCAM)
F. Cycle-accurate model (CAM)

E

Cycle-
timed

• Abstraction based on level of detail & granularity

• Computation and communication

 System design flow

 Path from model A to model F

Source: L. Cai, D. Gajski. “Transaction level modeling: An overview”, ISSS 2003

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 26

Computation vs. Communication

ComputationComputationCommunicationCommunication

Bus Model Device Model

Behavior can be described
algorithmically, without the burden of
the handshaking and control logic
associated with bus communication.

Communication can be described in a
wide range of fashions, from high-level
messages, to detailed signal level
handshakes without impacting the
behavior description.

c = a * b;
get a;
get b;
send c;

Must be synchronized

• Separation of concerns

• Flexibility in modeling

• IP reuse

Source: Coware, Inc., 2005

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 14

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 27

Computation Models

• Application model
• Model of Computation (MoC)

– Process-/state-based [KPN, SDF, FSM, …]

• Back-annotated execution timing
– Timing granularity (basic block level)

• Processor model
• Operating system

– Real-time multi-tasking (RTOS), drivers

• Hardware abstraction layer (HAL)
– Media accesses

• Processor hardware
– Bus I/O & interrupts

• Instruction-set model
• Instruction-set or micro-architecture

– Down to cycle-accurate behavior

B1 B2

OS

C
P

U

Drv

Interrupts

Bus

ISRHAL

Process B1()
{

…
waitfor(15000);
…
waitfor(25000);
…

};

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 28

Communication Models

• Pin-Accurate Model (PAM)
• Redundant RTL complexity

results in slow simulation
• Each device interface must

implement the bus protocol
• Each device on the bus has a

pin-accurate interface

• Transaction-Level Model (TLM)
• Less code, no wires, fewer

events yield faster simulation
• Protocol is modeled as a

single bus model instead of in
each device

• Each device communicates
via transaction-level API

 100x-10,000x faster than
PAMBUS

MEM CPU

Periph

TLM API TLM API

TLM API
HREQ

HADDR

HGRANT

HWDATA

HRESP

HREADY

ReqTrf
Grant

Trf

AddrTrf

WriteDataTrf

EotTrf

Transaction

BUS

MEM CPU

Periph Req

Grnt
Sel

Data
Addr

Clk

Source: Coware, Inc., 2005

Pin/Cycle
Accurate

Transactions
(Function Calls)

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 15

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 29

Transaction Level Modeling

The transaction level is a higher level of abstraction for
communication

For SoC, communication is often the bottleneck

Communication
channel

TargetInitiator

TLM

API

TLM

API

read(addr)
write(addr, data)

read(addr)
write(addr, data)

Source: Coware, Inc., 2005

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 30

TLM Details
• Abstracted communication

• Detailed signal handshaking is reduced to series of
generic events called “transactions”.

• Blocks are interconnected via a bus model, and
communicate through an API.

• The bus model handles all the timing, and events on the
bus can be used to trigger action in the peripherals.

sendAddress()

Initiator
Bus

Model

Bus Model keeps
track of timing.

Address Data

Initiator and target use
an API to communicate
via transfers.

Target

sendData()

Event timing can
trigger actions. addressEvent() dataEvent()

Source: Coware, Inc., 2005

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 16

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 31

SystemC/TLM 2.0

• Pointer to transaction object is passed from module to
module using forward and backward paths

• Transactions are of generic payload type

Interconnect
Initiator/
Target

TargetInitiator
Forward path

Backward path

Forward path

Backward path

Command

Address

Data

Byte enables

Response status

Extensions

Source: OSCI TLM-2.0

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 32

SystemC/TLM 2.0 Coding Styles

• Loosely-timed

• Sufficient timing detail to boot OS and
simulate multi-core systems

• Each transaction has 2 timing points:
begin (call) and end (return)

• Approximately-timed

• Cycle-approximate or cycle-count-
accurate

• Sufficient for architectural exploration

• Each transaction has at least
4 timing points

END_REQ

BEGIN_RESP

END_RESP

BEGIN_REQ

Initiator Target

BEGIN

END

Initiator Target

Source: OSCI TLM-2.0

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 17

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 33

Blocking and Non-Blocking Transports

• Blocking transport interface

• Typically used with loosely-timed coding style

• tlm_blocking_transport_if
void b_transport(TRANS&, sc_time&);

• Non-blocking transport interface

• Typically used with approximately-timed coding style

• Includes transaction phases

• tlm_fw_nonblocking_transport_if
tlm_sync_enum nb_transport_fw(TRANS&, PHASE&, sc_time&);

• tlm_bw_nonblocking_transport_if
tlm_sync_enum nb_transport_bw(TRANS&, PHASE&, sc_time&);

Source: OSCI TLM-2.0

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 34

Blocking Transport

TargetInitiator

wait(30ns);

Simulation time
0ns

b_transport(t, 0ns);

b_transport(t, 0ns);call

return

Simulation time
30ns

b_transport(t, 0ns);

b_transport(t, 0ns);call

return

Simulation time
0ns

Source: OSCI TLM-2.0

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 18

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 35

Non-Blocking Transport

TargetInitiator

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, END_REQ, 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, BEGIN_REQ, 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, END_RESP, 0ns);

nb_transport(TLM_ACCEPTED, -, -);

nb_transport(-, BEGIN_RESP, 0ns);

Source: OSCI TLM-2.0

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 36

Virtual Platform Prototyping

Computation refinement

Communication refinement

Untimed TLM (LT/AT) PCAM

Virtual Prototype

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 19

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 37

Not ModeledNot Modeled
--Point to pointPoint to point

--MemoryMemory--mappedmapped

Abstraction Levels

Functional ValidationFunctional Validation

System Partitioning and
Assembly

-Exploration and analysis

System Partitioning and System Partitioning and
AssemblyAssembly

--Exploration and analysisExploration and analysis

Emb. System Modeling
-Executable spec. capture

-Functional testing

Emb. System ModelingEmb. System Modeling
--Executable spec. captureExecutable spec. capture

--Functional testingFunctional testing

RTL Design & Verification
-Block design and unit test
-Validation in the system

RTL Design & VerificationRTL Design & Verification
--Block design and unit testBlock design and unit test
--Validation in the systemValidation in the system

System-level Verification
-Complete design at RTL
-System-level testbench

SystemSystem--level Verificationlevel Verification
--Complete design at RTLComplete design at RTL
--SystemSystem--level testbenchlevel testbench

Architectural ValidationArchitectural Validation

Hardware RefinementHardware Refinement

RTL VerificationRTL Verification

RTLRTL RTLRTL

TimedTimed
BusBus--FunctionalFunctional

UntimedUntimed

ApproximatelyApproximately
Timed TLMTimed TLM

CycleCycle--AccurateAccurate
TLMTLM

(Transfer Level)(Transfer Level)

RTLRTL

InstructionInstruction
AccurateAccurate

CycleCycle
AccurateAccurate

Processor Interconnect Peripheral

HostHost--compiledcompiled

Loosely TimedLoosely Timed
TLMTLM

RTLRTL
(DUT)(DUT)

TFTF
(rest)(rest)

In
cr

ea
si

ng
 S

co
pe

 f
or

 R
el

at
iv

e
O

pt
im

iz
at

io
n

In
cr

ea
si

ng
 S

co
pe

 f
or

 R
el

at
iv

e
O

pt
im

iz
at

io
n

In
cr

ea
si

ng
 S

im
ul

at
io

n
Pe

rf
or

m
an

ce
In

cr
ea

si
ng

 S
im

ul
at

io
n

Pe
rf

or
m

an
ce

Source: Coware, Inc., 2005

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 38

UT

IA ISS
TLM Bus

Log A C C U R A C Y

Lo
g

 S
 P

 E
 E

 D

SystemC
Executable TLM

100Kcps

1MIPS

10MIPS

10Kcps

100cps

1Kcps

Cycle
Accurate

-TLM

Pin-accurate
w/RTL

RTL

Host-based

Re-use for
Early

Software
Development

Re-use for
System-level

Hardware
Verification

ESL
Architectural

Design LT
3 Mcps

CA
150 kps

PAM+RTL
15 kps

Speed vs. Accuracy

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 20

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 39

Lecture 8: Outline

 Introduction

 System design methodology

• ESL design

Modeling

• Synthesis

• Verification

• ESL landscape

• Summary and conclusions

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 40

Design Automation

• Synthesis = Decision making + model refinement

 Successive, stepwise model refinement
 Layers of implementation detail

RefinementRefinement

Model nModel n

DBDB

Model n+1Model n+1

Specification modelSpecification model

Implementation modelImplementation model

Optim. algorithmOptim. algorithm

GUIGUI

Design decisions

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 21

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 41

X-Chart

Behavior Constraints

Structure Quality
numbers

Synthesis

Decision
making Refinement

Application Platform

Source: A. Gerstlauer, C. Haubelt, A. Pimentel, et al., “Electronic System-Level Synthesis Methodologies,“ TCAD, 2009.

Transaction
Level Model

Latency, Area,
Throuput, etc

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 42

Platform-Based System Synthesis

Application

Optimal Mapping ?

Platform

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 22

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 43

Resource Allocation

• Resource allocation, i.e., select resources from a
platform for implementing the application

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 44

Process Binding

• Process mapping, i.e., bind processes onto allocated
computational resources

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 23

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 45

Channel Routing

• Channel mapping, i.e., assign channels to paths over
busses and address spaces

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 46

Design Space Exploration

• Design Space Exploration is an iterative process:

• How can a single design point be evaluated?

• How can the design space be covered during the
exploration process?

Covering the
design space

Evaluating
design points

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 24

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 47

Optimization Approaches

• Exact methods
• Enumeration, (Integer) Linear Programs

• Heuristics
• Constructive

– Random mapping, hierarchical clustering

• Iterative
– Random search, simulated annealing, min-cut (Kernighan-Lin)

• Set-based (“intelligent” randomized search)
– Evolutionary Algorithms (EA),

Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO)

 Exact, constructive & iterative methods are prohibitive
 Large design space, multiple objectives, dynamic behavior

 Set-based approaches
 Randomized, problem independent (black box), Pareto set

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 48

Evaluation Approaches

• Dynamic simulation
• Profiling, ISS/RTL co-simulation
 Long simulation times, corner cases

• Static analysis
• Component-level estimation

[Worst-Case Execution Time (WCET)]
• System-level cost functions, real-time calculus

[Modular Performance Analysis (MPA)]
 Inaccurate bounds, manual interference (false paths)

 Combinations
• Host-compiled simulation
• Trace-driven simulation
 Tradeoff between accuracy and speed

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 25

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 49

Lecture 8: Outline

 Introduction

 System design methodology

• ESL design

Modeling

Synthesis

• Verification

• ESL landscape

• Summary and conclusions

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 50

Design Verification Methods

• Simulation based methods

• Specify input test vector, output test vector pair

• Run simulation and compare output against expected
output

• Formal Methods

• Check equivalence of design models or parts of models

• Check specified properties on models

• Semi-formal Methods

• Specify inputs and outputs as symbolic expressions

• Check simulation output against expected expression

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 26

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 51

Simulation

• Create test vectors and simulate model
• Simulation, debugging and visualization tools

[Synopsys VCS, Mentor ModelSim, Cadence NC-Sim]

• Inputs
• Specification

– Used to create interesting stimuli and monitors

• Model of DUT
– Typically written in HDL or C or both

• Output
• Failed test vectors

– Pointed out in different design representations by debugging tools

DUT

S
tim

ul
us

M
on

ito
rs

Specification

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 52

Equivalence Checking

• LEC uses boolean algebra to check for logic equivalence

1 = 1’ ?
2 = 2’ ?

in
pu

ts

ou
tp

ut
s

1
2

in
pu

ts

ou
tp

ut
s1’

2’

Equivalence
result

p

q

x

y

a

b

r

s

x

y
a

b
ty

b

pr

qr

ps pt

qs qt

xx

yx

xy
xy

yy

yy

aa

bb

bb

× =

• SEC uses FSMs to check for sequential equivalence

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 27

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 53

Model Checking

• Model M satisfies property P? [Clarke, Emerson ’81]

• Inputs

• State transition system representation of M

• Temporal property P as formula of state properties

• Output

• True (property holds)

• False + counter-example (property does not hold)

True /
False + counter-example

Model
Checker

P = P2 always leads to P4
s1

s4 s3

s2P1

P3P4

P2

M

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 54

Lecture 8: Outline

 Introduction

 System design methodology

 ESL design

• ESL landscape

• Commercial tools

• Academic tools

• Summary and conclusions

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 28

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 55

B
ri

d
g

e

CPU Mem

HW IP

A
rb

it
er

v1

C
1

B1 B2

B3 B4

C2

Communication
Computation &

System Synthesis
Front-End

System Synthesis
Front-End

Software / Hardware
Synthesis
Back-End

Software / Hardware
Synthesis
Back-End

TLM

In
st

ru
ct

io
n

-S
et

S
im

u
la

to
r

(I
S

S
) C

-b
ased

 R
T

L

Software
Object Code

Hardware
VHDL/Verilog

Application specification

Transaction-Level Models
TLMTLMTLMn

Platform library

Electronic System-Level (ESL) Landscape

SystemC,
CoWare, …

Mentor Catapult,
Forte, …

VaST, OVP
Virtutech,…

Green Hills,
gcc, VxWorks, …

Synopsys Design
Compiler, …

SPIRIT/IP-XACT
(XML)

MARTE (UML)

Tensilica

Matlab/Simulink,
LabView, …

System-Level Design Languages (SLDLs)

C/C++ code

Academic Tools

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 56

ESL Tools

• Electronic System-Level (ESL) terminology
• Often single hardware unit only

– C-to-RTL high-level synthesis (HLS) [Mentor Catapult, Forte Cynthesizer]

• System-level across hardware and software boundaries
• System-level frontend
• Hardware and software synthesis backend

Commercial tools for modeling and simulation
• Algorithmic modeling (MoC) [UML, Matlab/Simulink, Labview]
• Virtual system prototyping (TLM) [Coware, VaST, Virtutech]
Only horizontal integration across models / components

Academic tools for synthesis and verification
• MPSoC synthesis [SCE, Metropolis, SCD, PeaCE, Deadalus]
Vertical integration for path to implementation

EE382V-ICS: System-on-Chip (SoC)
Design

Lecture 8

© 2010 A. Gerstlauer 29

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 57

Academic MPSoC Design Tools

∘
∙
∙
∘
∙
∙

Comp.
refine

∙∙∙SystemCoDesigner

∙SCE

∘∘∘PeaCE/HoPES

∘Metropolis

∘∘∙∙Koski

∘∘∙∙Daedalus

Comm.
refine

Comm.
decision

Comp.
decision

DSEApproach

Source: A. Gerstlauer, C. Haubelt, A. Pimentel, et al., “Electronic System-Level Synthesis Methodologies,“ TCAD, 2009.

EE382V-ICS: SoC Design, Lecture 8 © 2010 A. Gerstlauer 58

System Design Flow Summary

Design Export
… after initial platform
configuration through
design refinement and

communication synthesis

Functional
IP

C/C++
SDL
SPW

Simulink

Synthesis / Place & Route etc.

Implementation Level Verification

Software
Assembly

Hardware
Assembly

Communication
Refinement, Integration &

Synthesis

Performance Analysis and
Platform Configuration

System Integration

Platform
Function

Platform
Architecture

Embedded System Requirements

Platform
Configuration

… at the
un-clocked, timing-

aware
system level

Architecture
IP

CPU/DSP
RTOS

Bus, Memory
HW
SW

