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Lecture 9: Outline
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“Traditional” Embedded Systems

© Margarida Jacome, UT Austin
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Modern Embedded Systems?

• Employ a combination of

• SW on programmable 
processors

– Flexibility, complexity

• Application-specific, 
custom HW

– Performance, low power

• Transducers, sensors, actuators

• A/D & D/A converters
– Interact with analog, continuous-time environment

 Micro-controllers & digital signal processors (DSPs)

 ASICs & Field programmable gate arrays (FPGAs)

Application 
Specific Gates

Processor 
Cores

Analog 
I/O

Memory

© Margarida Jacome, UT Austin
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HW/SW Co-Design

• Use additional computational unit(s) dedicated to some 
functions

• Hardwired logic

• Extra CPU

 Joint design of hardware and software architectures

• Specification

• Performance analysis

• Allocation and binding (partitioning)

• Scheduling

© Margarida Jacome, UT Austin
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Hardware vs. Software Modules

• Hardware
• Functionality implemented via a custom architecture 

(e.g. datapath + FSM)
• Software

• Functionality implemented on a programmable processor 
(datapath + programmable control)

 Key differences
• Concurrency

– Processors usually have one “thread of control”
– Dedicated hardware often has concurrent datapaths

 Multiplexing
– Software modules multiplexed with others on a processor (e.g. OS)
– Hardware modules are typically mapped individually on dedicated 

hardware blocks

© Margarida Jacome, UT Austin
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Accelerated System Architecture

CPU

Accelerator

Memory

I/O

request

data
result

© Margarida Jacome, UT Austin
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Accelerators

• Accelerator vs. co-processor

• A co-processor executes instructions.
– Instructions are dispatched by the CPU

• An accelerator appears as a device on the bus.
– The accelerator is controlled via registers

• Accelerator implementations

• Application-specific integrated circuit (ASIC)

• Field-programmable gate array (FPGA).

• Standard component.
– Example: graphics processor.

• SoCs enable multiple accelerators, peripherals, and some 
memory to be placed with a CPU on a single chip

© Margarida Jacome, UT Austin
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Why Accelerators?

• Better cost/performance

• Custom logic may be able to perform operation faster or at 
lower power than a CPU of equivalent cost

– Better at real-time, I/O, streaming, parallelism

• CPU cost is a non-linear function of performance
– May not be able to do the work on even the largest CPU

cost

performance

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 9 © 2010 A. Gerstlauer 10

Why Accelerators? (cont’d)

• Better real-time performance.

• Put time-critical functions on less-loaded processing 
elements

• Scheduling utilization is ‘limited’---extra CPU cycles must 
be reserved to meet deadlines. (see next lecture)

cost

performance

deadline
deadline w/
scheduling overhead

© Margarida Jacome, UT Austin
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Performance Analysis

• Critical parameter is speedup

• How much faster is the system with the accelerator?

• Must take into account

• Accelerator execution time

• Data transfer time

• Synchronization with the master CPU

• Total accelerator execution time

• taccel = tin + tx + tout

Data input Accelerated
computation

Data output

© Margarida Jacome, UT Austin
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Accelerator Speedup

• Assume loop is executed n times.

• Compare accelerated system to non-accelerated system:

• Saved Time = n(tCPU - taccel)

• = n[tCPU - (tin + tx + tout)]

• Speed-Up = Original Ex. Time / Accelerated Ex. Time

• Speed-Up = tCPU / taccel

• Data input/output times include

• flushing register/cache values to main memory;

• time required for CPU to set up transaction;

• data transfer overhead for bus packets, handshaking, etc.

Execution time of equivalent 
function on CPU

© Margarida Jacome, UT Austin
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Accelerator/CPU Interface

• Data transfers

• Accelerator registers provide control registers for CPU

• Shared memory region for data exchange
– Data registers can be used for small data objects

• Accelerator may include special-purpose read/write logic 
(DMA hardware)

– Especially valuable for large data transfers

• Caching problems

• CPU might not see memory writes by the accelerator

 Invalidate cache lines or disable caching of shared regions

• Synchronization

• Concurrent accesses to shared variables

 Semaphores using atomic test & set bus operations 

© Margarida Jacome, UT Austin
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Single- vs. Multi-Threaded

• One critical factor is available parallelism
• Single-threaded/blocking

– CPU waits for accelerator

• Multithreaded/non-blocking
– CPU continues to execute along with accelerator

• To multithread, CPU must have useful work to do
• But software must also support multithreading

 Sources of parallelism
• Overlap I/O and accelerator computation

– Perform operations in batches, read in second batch of data while 
computing on first batch.

• Find other work to do on the CPU
– May reschedule operations to move work after accelerator initiation.

© Margarida Jacome, UT Austin
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Execution Time Analysis

• Single-threaded:

• Count execution time of all 
component processes.

• Multi-threaded:

• Find longest path through 
execution.

P2

P1

A1

P3

P4

P2

P1

A1

P3

P4

© Margarida Jacome, UT Austin
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Lecture 8: Outline

 Accelerated system design

When to use accelerators

Performance analysis

• HW/SW co-design

• Decomposition

• Partitioning and scheduling

• System-level design

• MPSoC trends
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Decomposition

• Divide functional specification into modules

• Map units onto PEs

• Units may become processes

• Determine proper level of parallelism

f3(f1(),f2())

f1() f2()

f3()

vs.

© Margarida Jacome, UT Austin
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Decomposition Example

• Divide program into Control-Data Flow Graph (CDFG)

• Hierarchically decompose CDFG to identify partitions

Block 1

Block 2

Block 3

cond 1

cond 2
P1

P2

P3
P4

P5

© Margarida Jacome, UT Austin
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Synthesis

• Co-design tasks

• Allocate resources (PEs)

• Bind computations to resources (PEs)

• Schedule operations in time

 Partitioning = (allocation +) binding

 Mapping = binding + scheduling

• Allocation, scheduling and binding interact, 
but separating them helps

• Alternatively allocate, bind, then schedule

© Margarida Jacome, UT Austin
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Mapping Example

P1 P2

P3

d1 d2

Task graph Hardware platform

M1 M2

© Margarida Jacome, UT Austin
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Example Cost Model

• Process execution times

• Communication cost

• Assume communication within PE is free

• Cost of communication from P1 to P3 is d1 = 2

• Cost of P2 to P3 communication is d2 = 4

P1 P2

P3

d1 d2
2 4

P1

P2

P3

M1 M2
5

5

--

5

6

5

© Margarida Jacome, UT Austin
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First Design

• Allocate P2 -> M1; P1, P3 -> M2.

time

M1

M2

network

5 10 15 20

P1

P2

d2

P3

Time = 15

© Margarida Jacome, UT Austin
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Second Design

• Allocate P1 -> M1; P2, P3 -> M2:

M1

M2

network

5 10 15 20

P1

P2

d1

P3

Time = 12

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 9 © 2010 A. Gerstlauer 24

Co-Design Approaches

• Partitioning

• Exact methods
– Integer linear programming (ILP) formulations

• Heuristics
– Constructive: Hierarchical clustering

– Iterative: Kernighan-Lin

• Scheduling

• Static
• ILP formulations for combined scheduling & partitioning

 Borrowed from high-level synthesis (see later lectures)

• Dynamic
• Operating system

 Real-time scheduling
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Constructive Methods

• Random mapping

• Each object is assigned to a block randomly

• Hierarchical clustering

• Stepwise grouping of objects

• Closeness function determines how desirable it is to group 
two objects

 Constructive methods

• Often used to generate a starting partition for iterative 
methods

• Show the difficulty of finding proper closeness functions

© Lothar Thiele, ETH Zürich
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Hierarchical Clustering - Example (1)

2010

10
8

4 6

v1

v3v2

v4

v5 = v1v3

10

7

4 v4

v5

v2

Closeness function: arithmetic mean of weights

© Lothar Thiele, ETH Zürich
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Hierarchical Clustering - Example (2)

v6 = v2v5

5.5

v4

v610

7

4 v4

v5

v2

© Lothar Thiele, ETH Zürich
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Hierarchical Clustering - Example (3)

v7 = v6v4

v75.5

v4

v6

© Lothar Thiele, ETH Zürich
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Hierarchical Clustering - Example (4)

v7 = v6v4

v4

v6 = v2v5

v5 = v1v3

v1 v2 v3

Step 1:

Step 2:

Step 3:

Cut lines
(partitions)

© Lothar Thiele, ETH Zürich
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Iterative Methods - Kernighan-Lin (1)

• Simple greedy heuristic

• Until there is no improvement in cost: re-group a pair of 
objects which leads to the largest gain in cost

v9

v2

v4
v5

v7

v1

v3v6

v8

Example:  Cost = number of edges crossing the partitions
Before re-group: 5 ; after re-group: 4 ; gain = 1

© Lothar Thiele, ETH Zürich
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Iterative Methods - Kernighan-Lin (2)

• Problem

• Simple greedy heuristic can get stuck in a local 
minimum.

• Improved algorithm (Kernighan-Lin)

• As long as a better partition is found
– From all possible pairs of objects, virtually re-group the “best” (lowest 

cost of the resulting partition); then from the remaining not yet 
touched objects virtually re-group the “best” pair, etc., until all objects 
have been re-grouped. 

– From these n/2 partitions take the one with smallest cost and actually 
perform the corresponding re-group operations.

© Lothar Thiele, ETH Zürich
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Lecture 9: Outline

 Accelerated system design

When to use accelerators

Performance analysis

 HW/SW co-design

Partitioning

• Scheduling

• System-level design

• MPSoC trends
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Margarida Jacome - UT Austin 33

Multiplexing Software Modules

Call B

Return

Resume B

Resume B

Resume A

Resume A

A                B A                B A                B

SUBROUTINES                                  COROUTINES         PROCESSES
Hierarchical                                        Symmetric                                      Symmetric

Sequential, static                               Sequential, static                         Concurrent, dynamic
Modularity
Complexity

© Margarida Jacome, UT Austin
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Real-Time Scheduling

• Task types
• Periodic

– Rate Monotonic Scheduling (RMS)
– Earliest Deadline First (EDF)

• Aperiodic/sporadic
– EDF can be applied

• Task dependencies
• Aperiodic tasks with precedence constraints

– Latest Deadline First (LDF)
– Modified EDF algorithm, or heuristics

• Preemptive vs. non-preemptive
• Task with higher priority can preempt lower priority one

• Mono- and multi-processor scheduling
• Centralized RTOS, symmetric multi-processing (SMP)
• Distributed RTOS, asymmetric multi-processing (AMP)
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• Scheduling Policies
• RMS – Rate Monotonic Scheduling

– Task Priority = Rate = 1/Period
– RMS is the optimal preemptive fixed-priority scheduling policy

• EDF – Earliest Deadline First
– Task Priority = Current Absolute Deadline
– EDF is the optimal preemptive dynamic-priority scheduling policy

• Scheduling assumptions
• Single processor
• All tasks are periodic
• Zero context-switch time
• Worst-case task execution times are known
• No data dependencies among tasks

 RMS and EDF have both been extended to relax these

Periodic Task Scheduling

© Margarida Jacome, UT Austin
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Metrics

• How do we evaluate a scheduling policy

• Ability to satisfy all deadlines

• CPU utilization
– Percentage of time devoted to useful work

• Scheduling overhead
– Time required to make scheduling decision

• Constraints

• Set of tasks T with period i each

© Margarida Jacome, UT Austin
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Rate Monotonic Scheduling (RMS)

• Model

• All process run on single CPU.

• Zero context switch time.

• No data dependencies between processes.

• Process execution time is constant.

• Deadline is at end of period.

• Highest-priority ready process runs.

 RMS [Liu and Layland, 73]

• Widely-used, analyzable scheduling policy.

 Rate Monotonic Analysis (RMA)

• Theoretical analysis

© Margarida Jacome, UT Austin
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Process Parameters

• Ti is execution time of process i
• Deadline i is period of process I

 Response time
• Time required to finish a process/task.

 Critical instant
• Scheduling state that gives worst response time.

– Occurs when all higher-priority processes are ready to execute.

Period i

Pi

Computation time Ti

© Margarida Jacome, UT Austin
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Critical Instant

P4

P3

P2

P1

Critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

Worst case period for P4…

© Margarida Jacome, UT Austin
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RMS Priorities

• Optimal (fixed) priority assignment

• Shortest-period process gets highest priority
– priority based preemption can be used…

• Priority inversely proportional to period

• Break ties arbitrarily

 No fixed-priority scheme does better.

 RMS provides the highest worst case CPU utilization while 
ensuring that all processes meet their deadlines

© Margarida Jacome, UT Austin
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RMS Example 1

Process Execution Time Period
tiTiPi

41P1

62P2

123P3

0 2 4 6 8 10 12

P3

P2

P1

(least common multiple of 
process periods)

Unrolled schedule

Static priority: P1 >> P2 >> P3

© Margarida Jacome, UT Austin
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RMS Example 2

Time
0 5 10

P2 period

P1 period

P1

P2

P1 P1

© Margarida Jacome, UT Austin
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RMS CPU Utilization

• Utilization for n processes is

i Ti / i

• Schedulability analysis

i Ti / i ≤ n(21/n – 1)

• As number of tasks approaches infinity, the worst case
maximum utilization approaches 69%
• Yet, is not uncommon to find total utilizations around .90 or 

more (.69 is worst case behavior of algorithm)
• Achievable utilization is strongly dependent upon the 

relative values of the periods of the tasks comprising the 
task set…

© Margarida Jacome, UT Austin
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RMS Example 3

Process Execution Time Period
tiTiPi

41P1

86P2

Is this task set schedulable?? If yes, give the CPU utilization.

© Margarida Jacome, UT Austin
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RMS CPU Utilization (cont’d)

• RMS cannot asymptotically guarantee use of 100% of 
CPU, even with zero context switch overhead.

• Must keep idle cycles available to handle worst-case 
scenario.

• However, RMS guarantees all processes will always meet 
their deadlines.

Time0 5 10

P2 period

P1 period

P1

P2

P1 P1

P2

© Margarida Jacome, UT Austin
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RMS Implementation

• Statically fixed priority assignment

• Inversely proportional to period

 Efficient implementation

• Scan processes

• Choose highest-priority active process

© Margarida Jacome, UT Austin
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Earliest-Deadline-First (EDF) Scheduling

• Dynamic priority scheduling scheme.
• Process closest to its deadline has highest priority
• Requires recalculating processes at every timer interrupt

• EDF analysis
• EDF can use 100% of CPU for worst case
 Optimal for periodic scheduling

• EDF implementation
• On each timer interrupt:

– Compute time to deadline
– Choose process closest to deadline

• Generally considered too expensive to use in practice, 
unless the task count is small

– Does not work in an OS with only fixed priorities!

© Margarida Jacome, UT Austin
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EDF Example

P2

P1

t

© Margarida Jacome, UT Austin
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EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE382V-ICS: SoC Design, Lecture 9 © 2010 A. Gerstlauer 50

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin
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EDF Example

P2

P1

t

© Margarida Jacome, UT Austin
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EDF Example

P2

P1

t

© Margarida Jacome, UT Austin
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EDF Example

P2

P1

t

No process is
ready…

© Margarida Jacome, UT Austin
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EDF Example

P2

P1

t

© Margarida Jacome, UT Austin
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EDF Example

P2

P1

© Margarida Jacome, UT Austin
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Priority Inversion

• Low-priority process keeps high-priority process from 
running.

• Improper use of system resources can cause scheduling 
problems

– Low-priority process grabs I/O device.

– High-priority device needs I/O device, but can’t get it until low-priority 
process is done.

 Can cause deadlock

 Give priorities to system resources

 Have process inherit the priority of a resource that it 
requests

 Low-priority process inherits priority of device if higher
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Performance Evaluation

• Context switch time

• Non-zero context switch time can push limits of a tight 
schedule

• Hard to calculate effects
– Depends on order of context switches

• In practice, OS context switch overhead is small

• May want to test

• Context switch time assumptions on real platform

• Scheduling policy

© Margarida Jacome, UT Austin
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What about interrupts?

• Interrupt overhead
• Interrupts take time away from processes
• Other event processing may be masked 

during interrupt service routine (ISR)
• Perform minimum work possible in the 

interrupt handler

 Device processing structure
• Interrupt service routine (ISR) performs 

minimal I/O.
– Get register values, put register values

• Interrupt service process/thread performs 
most of device function.

P1

OS

P2

OS

intr

P3

© Margarida Jacome, UT Austin
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Caches

• Processes can cause additional caching problems.

• Even if individual processes are well-behaved, processes 
may interfere with each other

• Worst-case execution time with bad cache behavior is 
usually much worse than execution time with good cache 
behavior

 Perform schedulability analysis without caches

• Take any online performance gains as “free lunch”

© Margarida Jacome, UT Austin
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Lecture 9: Outline

 Accelerated system design

When to use accelerators

Performance analysis

 HW/SW co-design

Partitioning

Scheduling

• System-level design

• MPSoC trends
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Many More Implementation Choices

• Microprocessors
• Microcontrollers

• Domain-specific processors
• DSP
• Graphics/network 

processors
• ASIPs
• Reconfigurable SoC
• FPGA
• Gatearray
• ASIC

Speed Power Cost

High        Low
Volume

© Margarida Jacome, UT Austin
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Hybrid Processors

• Many types of programmable processors

• Past/now: micro-processor/-controller, DSP

• Now/future: graphics, network, crypto, game, … processor

• Application-specific instruction-set processor (ASIP)

• Processors with instruction-sets tailored to specific 
applications or application domains

– Instruction-set generation as part of synthesis

– e.g. Tensilica

• Pluses:
– Customization yields lower area, power etc. 

• Minuses:
– Higher h/w & s/w development overhead

– Design, compilers, debuggers

© Margarida Jacome, UT Austin
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DSP core 1
Modem

DSP core 2
Sound codec

ASIP core 1
Master control

ASIP core 2
Mem. controller

ASIP core 3
Bit manip.

VLIW DSP

Programmable video 
operations, std. extensions

A/D
&
D/A

Hardware Accelerators

Video operators for DCT, 
inv. DCT, motion estim.

Memory
(RAM)

Glue Logic

I/O: S interface

I/O: Host interface

Embedded
Software

Hardware:
Std. cell and
Memory

Designed by the
R&D group at SGS 
Thompson

MPSoC: Video Telephone

© Margarida Jacome, UT Austin
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IP-Based Design

Source: A. Sangiovanni-Vincentelli, UC Berkeley

© Margarida Jacome, UT Austin



EE382V-ICS: System-on-Chip (SoC) 
Design

Lecture 9

© 2010 A. Gerstlauer 33

EE382V-ICS: SoC Design, Lecture 9 © 2010 A. Gerstlauer 65

Platform Mapping

Source: A. Sangiovanni-Vincentelli, UC Berkeley

© Margarida Jacome, UT Austin
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MPSoC Synthesis Approaches

• Design space exploration

• Multi-objective

• Pareto optimality

 Traditional HW/SW co-design approaches not sufficient

 Set-based approaches

• “Intelligent”, randomized search

 Evolutionary Algorithms (EA), 
Particle Swarm Optimization (PSO), 
Ant Colony Optimization (ACO)
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Design Space Exploration

• Iterative process

• Determine mapping

• Evaluate solutions

Application Architecture

Mapping

Estimation

© Lothar Thiele, ETH Zürich


