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Lecture 9: Outline

* Accelerated system design
* When to use accelerators
* Performance analysis

» HW/SW co-design
* Partitioning
» Scheduling

» System-level design
* MPSoC trends
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“Traditional” Embedded Systems
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Modern Embedded Systems?

 Employ a combination of e e T
« SW on programmable Specific Gates 110

processors
- F'_ex'b'_“ty’ COmple?ﬂ_ty Processor Veman
» Application-specific, Cores
custom HW

— Performance, low power
» Transducers, sensors, actuators
* A/D & D/A converters

— Interact with analog, continuous-time environment

» Micro-controllers & digital signal processors (DSPSs)
» ASICs & Field programmable gate arrays (FPGAS)
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HW/SW Co-Design

» Use additional computational unit(s) dedicated to some
functions

» Hardwired logic
» Extra CPU

» Joint design of hardware and software architectures
» Specification
» Performance analysis
 Allocation and binding (partitioning)
» Scheduling
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Hardware vs. Software Modules

e Hardware
» Functionality implemented via a custom architecture
(e.g. datapath + FSM)
» Software

» Functionality implemented on a programmable processor
(datapath + programmable control)

» Key differences

* Concurrency
— Processors usually have one “thread of control”
— Dedicated hardware often has concurrent datapaths
» Multiplexing
— Software modules multiplexed with others on a processor (e.g. OS)

— Hardware modules are typically mapped individually on dedicated
hardware blocks
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Accelerated System Architecture
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Accelerators

» Accelerator vs. CO-processor

» A co-processor executes instructions.
— Instructions are dispatched by the CPU

* An accelerator appears as a device on the bus.
— The accelerator is controlled via registers

e Accelerator implementations
» Application-specific integrated circuit (ASIC)
» Field-programmable gate array (FPGA).
» Standard component.
— Example: graphics processor.
» SoCs enable multiple accelerators, peripherals, and some
memory to be placed with a CPU on a single chip
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Why Accelerators?

» Better cost/performance
» Custom logic may be able to perform operation faster or at
lower power than a CPU of equivalent cost
— Better at real-time, I/O, streaming, parallelism

» CPU cost is a non-linear function of performance
— May not be able to do the work on even the largest CPU

cost

performance
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Why Accelerators? (cont’'d)

» Better real-time performance.
» Put time-critical functions on less-loaded processing
elements
» Scheduling utilization is ‘limited’---extra CPU cycles must
be reserved to meet deadlines. (see next lecture)

cost :
_ deadline w/
deadline / scheduling overhead

performance
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Performance Analysis

» Critical parameter is speedup

» How much faster is the system with the accelerator?
e Must take into account

» Accelerator execution time

» Data transfer time

» Synchronization with the master CPU

e Total accelerator execution time

¢ taccel = tin + tx + tout
i \ Data output
Data input Accelerated P
computation
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Accelerator Speedup

* Assume loop is executed n times.

 Compare accelerated system to non-accelerated system:
« Saved Time = n(tepy - tacce)
¢ = Ntepy - (G + t + toy)]

Execution time of equivalent
function on CPU

» Speed-Up = Original Ex. Time / Accelerated Ex. Time
» Speed-Up = tepy / taggel

» Data input/output times include
» flushing register/cache values to main memory;
« time required for CPU to set up transaction;
 data transfer overhead for bus packets, handshaking, etc.
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Accelerator/CPU Interface

e Datatransfers
» Accelerator registers provide control registers for CPU

» Shared memory region for data exchange
— Data registers can be used for small data objects

» Accelerator may include special-purpose read/write logic
(DMA hardware)

— Especially valuable for large data transfers

» Caching problems
» CPU might not see memory writes by the accelerator
» Invalidate cache lines or disable caching of shared regions

* Synchronization
» Concurrent accesses to shared variables
» Semaphores using atomic test & set bus operations
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Single- vs. Multi-Threaded

» One critical factor is available parallelism
» Single-threaded/blocking

— CPU waits for accelerator

» Multithreaded/non-blocking
— CPU continues to execute along with accelerator

* To multithread, CPU must have useful work to do
» But software must also support multithreading

» Sources of parallelism

» Overlap I/0 and accelerator computation

— Perform operations in batches, read in second batch of data while
computing on first batch.

» Find other work to do on the CPU
— May reschedule operations to move work after accelerator initiation.
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Execution Time Analysis

Single-threaded: e Multi-threaded:
« Count execution time of all « Find longest path through
component processes. execution.
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Lecture 8: Outline

« HW/SW co-design
» Decomposition
* Partitioning and scheduling
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Decomposition

» Divide functional specification into modules
* Map units onto PEs
» Units may become processes

» Determine proper level of parallelism

f1() 2()
f3(f10).£20) v, N/
f3()
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Decomposition Example

» Divide program into Control-Data Flow Graph (CDFG)
» Hierarchically decompose CDFG to identify partitions

cond L >——— e 3
cond 2 — Block 1
' P1

Block 2

P2
| | Block 3 ———
P5 | P3 S i
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Synthesis

e Co-design tasks
 Allocate resources (PESs)

» Bind computations to resources (PES)

» Schedule operations in time

» Partitioning = (allocation +) binding

» Mapping = binding + scheduling

» Allocation, scheduling and binding interact,

but separating them helps

 Alternatively allocate, bind, then schedule

EE382V-ICS: SoC Design, Lecture 9
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Mapping Example

dl d2

M1

M2

Task graph Hardware platform
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Example Cost Model

e Process execution times

W w (o
Pl 5 5

2 4
P2 5 6 di d2

R

e« Communication cost
» Assume communication within PE is free
» Cost of communication from P1to P3isdl =2
e Cost of P2 to P3 communicationis d2 =4
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First Design

e Allocate P2 -> M1; P1, P3 -> M2.

i

M2
network
\ \ \ \
5 10 15 20
time
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Second Design

* Allocate P1 -> M1; P2, P3 -> M2:

““

M2

network
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Co-Design Approaches

e Partitioning
» Exact methods
— Integer linear programming (ILP) formulations
» Heuristics

— Constructive: Hierarchical clustering
— lterative: Kernighan-Lin

e Scheduling

+ Static
 ILP formulations for combined scheduling & partitioning
» Borrowed from high-level synthesis (see later lectures)
* Dynamic
» Operating system
» Real-time scheduling

EE382V-ICS: SoC Design, Lecture 9 © 2010 A. Gerstlauer

24

© 2010 A. Gerstlauer

Lecture 9

12



EE382V-ICS: System-on-Chip (SoC)

Design

Constructive Methods

« Random mapping
< Each object is assigned to a block randomly

e Hierarchical clustering
« Stepwise grouping of objects

« Closeness function determines how desirable it is to group
two objects

» Constructive methods

» Often used to generate a starting partition for iterative
methods

» Show the difficulty of finding proper closeness functions

EE382V-ICS: SoC Design, Lecture 9 © Lothar Thiele, ETH Zurich 25

Hierarchical Clustering - Example (1)

Vg = VUV,

10
©
'O

Closeness function: arithmetic mean of weights
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Hierarchical Clustering - Example (2)

Vg = VUV,
55
.
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Hierarchical Clustering - Example (3)
V, = VUV,
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Hierarchical Clustering - Example (4)

Step 2: Cut lines
(partitions)

Step 1:
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Iterative Methods - Kernighan-Lin (1)

e Simple greedy heuristic
« Until there is no improvement in cost; re-group a pair of
objects which leads to the largest gain in cost

Example: Cost = number of edges crossing the partitions
Before re-group: 5 ; after re-group: 4 ; gain =1

EE382V-ICS: SoC Design, Lecture 9 © Lothar Thiele, ETH Zurich 30
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Iterative Methods - Kernighan-Lin (2)

* Problem

» Simple greedy heuristic can get stuck in a local
minimum.

* Improved algorithm (Kernighan-Lin)

» Aslong as a better partition is found

— From all possible pairs of objects, virtually re-group the “best” (lowest
cost of the resulting partition); then from the remaining not yet
touched objects virtually re-group the “best” pair, etc., until all objects
have been re-grouped.

— From these n/2 partitions take the one with smallest cost and actually
perform the corresponding re-group operations.
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Lecture 9: Outline

» Scheduling
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Multiplexing Software Modules
A B A m B A B
v
v Resume A
$ Resume B /
CallB k—*/
/ v
7 /" 'Resume A
Resume B
R
v
J Return
\ v v v v
SUBROUTINES COROUTINES PROCESSES
Hierarchical Symmetric Symmetric
Sequential, static Sequential, static Concurrent, dynamic
Modularity
Complexity
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Real-Time Scheduling

e Task types

» Periodic
— Rate Monotonic Scheduling (RMS)
— Earliest Deadline First (EDF)

» Aperiodic/sporadic
— EDF can be applied

» Task dependencies

» Aperiodic tasks with precedence constraints
— Latest Deadline First (LDF)
— Modified EDF algorithm, or heuristics

e Preemptive vs. non-preemptive
» Task with higher priority can preempt lower priority one

¢ Mono- and multi-processor scheduling
e Centralized RTOS, symmetric multi-processing (SMP)
 Distributed RTOS, asymmetric multi-processing (AMP)

EE382V-ICS: SoC Design, Lecture 9 © 2010 A. Gerstlauer
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Periodic Task Scheduling

e Scheduling Policies

* RMS — Rate Monotonic Scheduling
— Task Priority = Rate = 1/Period
— RMS is the optimal preemptive fixed-priority scheduling policy

» EDF — Earliest Deadline First
— Task Priority = Current Absolute Deadline
— EDF is the optimal preemptive dynamic-priority scheduling policy

* Scheduling assumptions
» Single processor
All tasks are periodic
Zero context-switch time
» Worst-case task execution times are known
* No data dependencies among tasks
» RMS and EDF have both been extended to relax these

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 35

Metrics

 How do we evaluate a scheduling policy
* Ability to satisfy all deadlines

» CPU utilization
— Percentage of time devoted to useful work

» Scheduling overhead
— Time required to make scheduling decision

« Constraints
» Set of tasks T with period t; each

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 36
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Rate Monotonic Scheduling (RMS)

 Model

All process run on single CPU.

Zero context switch time.

No data dependencies between processes.
Process execution time is constant.
Deadline is at end of period.
Highest-priority ready process runs.

» RMS [Liu and Layland, 73]

Widely-used, analyzable scheduling policy.

» Rate Monotonic Analysis (RMA)

Theoretical analysis

EE382V-ICS: SoC Design, Lecture 9

© Margarida Jacome, UT Austin
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Process Parameters

* T,is execution time of process i
» Deadline 7, is period of process |

Period t;

Computation time T,

» Responsetime

Time required to finish a process/task.

> Critical instant

Scheduling state that gives worst response time.
— Occurs when all higher-priority processes are ready to execute.

EE382V-ICS: SoC Design, Lecture 9
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Critical Instant

interfering processes
o~ ™
1 I
L 1
e

e - -

. e .
Instant p | Worst case period for P4...
\ I
1 1
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RMS Priorities

e Optimal (fixed) priority assignment
» Shortest-period process gets highest priority
— priority based preemption can be used...

» Priority inversely proportional to period
» Break ties arbitrarily

» No fixed-priority scheme does better.

» RMS provides the highest worst case CPU utilization while
ensuring that all processes meet their deadlines

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 40
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RMS Example 1

Process Execution Time Period
P, T t;
P, 1 4
ic priority: >> >>
P, 2 6 Static priority: P1 P2 P3
Ps 3 12
P, mm e Unrolled schedule
P, — (least common multiple of
process periods)
P, — —
Y I S | I O
0 2 4 6 8 10 12
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RMS Example 2

P2 period
oo >
P2
P1 period
e B - e o e >
[ I I
Time
0 5 10
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RMS CPU Utilization

e Utilization for n processes is
Z, T /v
e Schedulability analysis

2, T/t <n@in—1)

* As number of tasks approaches infinity, the worst case
maximum utilization approaches 69%
* Yet, is not uncommon to find total utilizations around .90 or
more (.69 is worst case behavior of algorithm)
» Achievable utilization is strongly dependent upon the
relative values of the periods of the tasks comprising the
task set...

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 43

RMS Example 3

Process Execution Time Period
Pi Ti tl
P, 1 4
P, 6 8

Is this task set schedulable?? If yes, give the CPU utilization.

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 44
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RMS CPU Utilization (cont’'d)

* RMS cannot asymptotically guarantee use of 100% of
CPU, even with zero context switch overhead.
» Must keep idle cycles available to handle worst-case
scenario.
 However, RMS guarantees all processes will always meet
their deadlines.

P2 period
P2
P2
P1 period

( w
0 5 10 Time
EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 45
RMS Implementation
» Statically fixed priority assignment

* Inversely proportional to period
» Efficient implementation

* Scan processes

» Choose highest-priority active process
EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 46
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Earliest-Deadline-First (EDF) Scheduling

e Dynamic priority scheduling scheme.
» Process closest to its deadline has highest priority
» Requires recalculating processes at every timer interrupt

» EDF analysis
* EDF can use 100% of CPU for worst case
» Optimal for periodic scheduling

» EDF implementation

» On each timer interrupt:
— Compute time to deadline
— Choose process closest to deadline
» Generally considered too expensive to use in practice,
unless the task count is small
— Does not work in an OS with only fixed priorities!

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin
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EDF Example

P1

P2

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin
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EDF Example

P1

2 |I

EE382V-ICS: SoC Design, Lecture 9

© Margarida Jacome, UT Austin 49

EDF Example

P1

> [

EE382V-ICS: SoC Design, Lecture 9
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EDF Example

P1

-~ [
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EDF Example

P1

\ \
» [
\
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EDF Example
ﬁ
P1
I I I I
- T
- B B
\ \ \
T
No process is
ready...
t
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EDF Example

P1

]
- B B N
\
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EDF Example

P1

I x
- B N N
\
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Priority Inversion

» Low-priority process keeps high-priority process from
running.

» Improper use of system resources can cause scheduling
problems
— Low-priority process grabs 1/O device.

— High-priority device needs I/O device, but can’t get it until low-priority
process is done.

» Can cause deadlock

» Give priorities to system resources

» Have process inherit the priority of a resource that it
requests

» Low-priority process inherits priority of device if higher

EE382V-ICS: SoC Design, Lecture 9 © 2010 A. Gerstlauer 56
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Performance Evaluation

e Context switch time

» Non-zero context switch time can push limits of a tight
schedule

» Hard to calculate effects
— Depends on order of context switches

 In practice, OS context switch overhead is small

* May want to test
» Context switch time assumptions on real platform
» Scheduling policy

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 57

What about interrupts?

e Interrupt overhead
* Interrupts take time away from processes

» Other event processing may be masked P1
during interrupt service routine (ISR)
« Perform minimum work possible in the 0s

interrupt handler

» Device processing structure

« Interrupt service routine (ISR) performs (0N
minimal I/O.
— Get register values, put register values P3

* Interrupt service process/thread performs
most of device function.

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 58
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Caches

* Processes can cause additional caching problems.

» Even if individual processes are well-behaved, processes
may interfere with each other

» Worst-case execution time with bad cache behavior is
usually much worse than execution time with good cache
behavior

» Perform schedulability analysis without caches
» Take any online performance gains as “free lunch”

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin
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* System-level design
* MPSoC trends
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Many More Implementation Choices

Speed Power Cost

e Microprocessors N A

» Microcontrollers
* Domain-specific processors
+ DSP

» Graphics/network
processors

e ASIPs
e Reconfigurable SoC
c FPGA
» Gatearray v v
e ASIC High Low

Volume

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 61

Hybrid Processors

* Many types of programmable processors
» Past/now: micro-processor/-controller, DSP
» Now/future: graphics, network, crypto, game, ... processor

» Application-specific instruction-set processor (ASIP)

» Processors with instruction-sets tailored to specific
applications or application domains
— Instruction-set generation as part of synthesis
— e.g. Tensilica
* Pluses:
— Customization yields lower area, power etc.
* Minuses:

— Higher h/w & s/w development overhead
— Design, compilers, debuggers

EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 62
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MPSoC: Video Telephone
DSP core 1 VLIW DSP D Embedded
Modem Software
Programmable video QID
operations, std. extensions .
DSP core 2 p DIA D Hardware:
Std. cell and
Sound codec Memor
Hardware Accelerators Y
ASIP core 1 Video operators for DCT,
Master control inv. DCT, motion estim.
Designed by the
R&D group at SGS
ASIP core 2 Glue Logic Thompson
Mem. controller Memory
(RAM) | 1/O: S interface |
ASIP core 3
Bit manip. |I/O: Host interface |
EE382V-ICS: SoC Design, Lecture 9 © Margarida Jacome, UT Austin 63

IP-Based Design
Which Bus? PI? Which DSP
) AMBA? Processor? C50?
Dedicated Bus for Can DSP be done on
DSP? Microcontroller?
Can | Buy € External . N LIz
anWPEG2 | el IO - Procéssor Which
Prqcessor? 2 Microcontroller?
Which One? MPEG  |ae——3mD DSP RAM ARM? HC11?
2
]
Peripheral [#E—— 8—  Control
[ Processor
Audio s 3 |_| System How fast will my
Decode L | RAM User Interface
Software run? How
Do | need a dedicated Audio Decoder? M:‘Ic.h e Ioln Ty
Can decode be done on Microcontroller? LAl G
Source: A. Sangiovanni-Vincentelli, UC Berkeley
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Platform Mapping

Transport Decode Implemented
as Software Task Running
on Microcontroller

Communication
Over Bus

i,

DSP
Processor

—————]

MPEG [

Peripheral [#—3= 23— Control
Processor

3“_‘1}? System
eCode L R A31

Processor Bus

Audio Decode Behavior
Implemented on
Dedicated Hardware

Source: A. Sangiovanni-Vincentelli, UC Berkeley
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MPSoC Synthesis Approaches

» Design space exploration
* Multi-objective
» Pareto optimality
» Traditional HW/SW co-design approaches not sufficient

» Set-based approaches
» “Intelligent”, randomized search

» Evolutionary Algorithms (EA),
Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO)

EE382V-ICS: SoC Design, Lecture 9 © 2010 A. Gerstlauer 66
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Design Space Exp

loration

e lterative process
» Determine mapping
» Evaluate solutions

Application

Architecture

\

Mapping /

C

Estimation
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