
Verification of Digital Systems, Spring 2020
1. Introduction to Verification 1

1. Introduction to Verification

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

Verification of Digital Systems
Spring 2020

January 23, 2020

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 1 / 44

Goals of This Course

Learn the principles of verification

Verification is a key task in designing complex chips (as well
as software and systems, for that matter)

Takes the majority of effort in the design cycle

We will focus on digital hardware in this class

Class will cover both simulation-based and formal verification

Apply techniques from the lectures to designs in the lab

Use commercial software (Cadence, Mentor Graphics)

Formal equivalence checking

Specification and application of assertions in simulation

Portable constrained random tests

Formal verification of assertions

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 1 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 2

Course Information

Instructor

Jacob A. Abraham

+1-512-471-8983

jaa@cerc.utexas.edu

http://www.cerc.utexas.edu/~jaa

More on the course

Course Web Page:
http://www.cerc.utexas.edu/~jaa/verification/

Prerequisites: VLSI I (or equivalent), some programming
experience, computer architecture

Lectures and discussion in class will cover basics of course

Homework, Laboratory exercises will help you gain a deep
understanding of the subject

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 2 / 44

Topics

Introduction

Machine learning in verification
Formal equivalence checking

Binary decision diagrams, satisfiability engines
Use of term rewriting
Sequential equivalence checking

Dynamic (simulation-based) verification
Simulation environments, coverage metrics
Assertion-based verification
UVM

Formal property checking
Introduction to model checking and comparing finite-state
machines
Techniques to detect subtle bugs

Post-Silicon validation

Verification challenges

Abstractions to reduce complexity

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 3 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 3

Lectures in the course

Introduction

Example of verification flow in industry (Alan Hunter, ARM)

Machine learning and AI in verification (Monika Farkash,
AMD)

Formal equivalence checking (combinational)

Finite-state machines and temporal logic

Assertion-based verification and SystemVerilog assertions
(Harry Foster, Siemens)

Verification testbenches and UVM (Nagesh Loke, ARM)

Sequential equivalence checking (Shaun Feng, Samsung)

Model checking (Amit Goel, Apple)

Quick Error Detection

Verifying cache coherency

Semi-formal verification (Hary Mony, RealIntent)

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 4 / 44

Lectures in the course, Cont’d

CPU verification Challenges (Tse-Yu Yeh, Apple)

GPU verification Challenges (John Coers, Apple)

SoC verification

Techniques to extend tool capacity

Am I ready to be a verification engineer? (Ram Narayan,
ARM)

New directions in verification

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 5 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 4

Work in the Course

Lectures

Cover fundamentals of the topics
Notes posted on the web page
Supplemental notes and papers on Canvas

Homework problems

Solve problems posted on Canvas

Laboratory exercises

Use commercial tools to apply techniques to realistic designs

Project

Your opportunity to delve into a verification-related topic of
interest to you
2 – 3 person teams
Project report and presentation to class at the end of the
semester
Work on project throughout the semester

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 6 / 44

Laboratory Exercises

Lab. 1 – Logic Equivalence Checking (LEC)

Formally check logical equivalence between a simple RTL
module and its synthesized version

Example, after DFT insertion

Cadence Conformal LEC

Lab. 2 – Assertion Based Verification (ABV)

Add assertions to a testbench to verify that the
implementation correctly implements design intent

Document the functional coverage

Mentor Questa

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 7 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 5

Laboratory Exercises, Cont’d

Lab. 3 – Universal Verification Methodology (UVM)

Standardized verification methodology

Testbench in SystemVerilog for a given design

Design tested for functional bugs

Mentor Questa

Lab. 4 – Formal Property Checking

Check specified properties in all possible states

Study effect of improperly specified properties

Techniques to detect subtle bugs: QED

Cadence JasperGold

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 8 / 44

Project
Topics

Research different areas in verification to pick a topic

Project can focus on a particular aspect of verification

Analysis and comparison of different verification techniques
Application of verification to a real design (targets include the
SUN OpenSparc (http://www.opensparc.net/), the Illinois
Verilog Model for the DEC Alpha (http:
//www.crhc.illinois.edu/ACS/tools/ivm/about.html),
designs from http://www.opencores.org/projects/

including Amber ARM
(http://opencores.org/project,amber), RISC-V
(http://riscv.org/), Ridecore
(https://github.com/ridecore/ridecore/), Pulpino
(https://github.com/pulp-platform/pulpino) )

Presentation/Report

Team presents results to the class (during the last few classes)

A concise report on the project is due at the end of the course
ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 9 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 6

Reliability in the Life of an Integrated Circuit – I

Design

Design “bugs”
Verification (Simulation, Formal)

Fabrication

Wafer

Process variations,
defects

Process Monitors

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 10 / 44

Reliability in the Life of an Integrated Circuit – II

Wafer Probe Package

Tester

Identify residual
bugs, Test cost,

coverage
Post-Silicon

Validation, Design
for Test, Built-In

Self Test

System

Application

Test escapes,
wearout,

environment
System Self-Test,
Error Detection,
Fault Tolerance

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 11 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 7

Verification versus Validation – From IEEE “PMBOK
guide”

Verification

“The evaluation of whether or not a product, service, or system
complies with a regulation, requirement, specification, or imposed
condition. It is often an internal process.”
Are we designing the system right?

Validation

“The assurance that a product, service, or system meets the needs
of the customer and other identified stakeholders. It often involves
acceptance and suitability with external customers.”
Are we designing the right system?

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 12 / 44

Historical Interest in Verification

A saga of “correct” software

In 1969, Naur published a technique for constructing and
proving software, and applied it to a text processing problem

Informally proved correctness of about 25 lines of ALGOL 60

Leavenworth in a 1970 review pointed out that the first line of
the output would be preceded by a blank unless the first word
had exactly the maximum number of possible characters in a
line (MAXPOS)

London found three additional faults in 1971 (e.g., procedure
would not terminate unless word with more than MAXPOS
characters encountered)

Presented a corrected version and proved it formally

Goodenough and Gerhart found three further faults in 1975
that London had not detected (included the fact that the last
word would not be output unless it is followed by a BLANK or
NIL)

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 13 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 8

Historical Interest, Cont’d

A saga of “correct” software, Cont’d

Of the total of seven faults detected by the above researchers,
four could have been detected simply by running the
procedure on test data!

Difficult to capture the specifications and requirements
against which an implementation is proved correct

National Computer Conference, 1978

Panel session: “Formal methods in programming – When will
they be practical?”

Don Knuth:

“Beware of bugs in the above code; I have only proved it correct,
not tried it”

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 14 / 44

Historical Interest in Verification, Cont’d

Hardware

J. Paul Roth, “Hardware Verification”, IEEE Transactions on
Computers, December 1977.

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 15 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 9

Analyzing Complex Designs

Need to (implicitly) search a very large state space

Find bugs in a design

Generate tests for faults in a manufactured chip

Basic algorithms for even combinational blocks (SAT, ATPG) are
NP-complete Approaches to deal with real designs

Exploit hierarchy in the design

Develop abstractions for parts of a design

State-space explosion: A design with 300 state variables has more
states than the number of protons in the universe (1080)!

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 16 / 44

The (In)Famous Pentium FDIV Problem

Graph of x, y, x/y in a small region by Larry Hoyle

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 17 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 10

What is a “Bug”?

Design does not Match the Specification

One problem: complete (and consistent) specifications may
not exist for many products

For example, the difficulty in designing an X86 compatible
chip is not in implementing the X-86 instruction set
architecture, but in matching the behavior with Intel chips

Something which the customer will complain about

“It’s not a bug, it’s a feature”

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 18 / 44

Verification Consumes the Majority of Project Time

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 19 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 11

Number of Engineers on a Project: Design vs. Verification

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 20 / 44

Where Verification Engineers Spend Their Time

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 21 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 12

Adoption of Dynamic Verification Techniques

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 22 / 44

Adoption of Static (Formal) Verification Techniques

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 23 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 13

RTL Design Language Adoption

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 24 / 44

Verification Language (Testbench) Adoption

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 25 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 14

Assertion Language Adoption

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 26 / 44

Many Projects Miss Schedule

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 27 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 15

Required Spins Before Production

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 28 / 44

Flaws Contributing to Respin

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 29 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 16

Root Cause of Functional Flaws

Source: Wilson Research Group and Mentor Graphics, 2018 Functional

Verification Study

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 30 / 44

Design and Implementation Verification

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 31 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 17

Verification Approaches

Simulation (the most popular verification method)

Cycle based, functional simulation for billions of cycles
Good coverage metrics usually not available
Assertions used to specify behavior
Emulation

Capital intensive
Map design to be verified on FPGAs
Run OS and application at MHz rates

Formal verification

Exhaustive verification of small modules
Formal equivalence checking
Property checking

Techniques to manage complexity

Compositional techniques
Make use of symmetry
Abstractions

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 32 / 44

Evaluating the Complete Design

Is there a verification technique which can be applied to the
entire chip?

Only one approach which scales with the design: Simulation

Most common technique now used in industry

Cycle-based simulation can exercise the design for millions
of cycles

Unfortunately, the question of when to stop simulation is open
No good measures of coverage

Emulation
Used to verify the first Pentium (windows booted on FPGA
system)
Developing another accurate model is an issue

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 33 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 18

When are we Done Simulating?

When do you tape out?

Motorola criteria (EE Times, July 4, 2001)

40 billion random cycles without finding a bug

Directed tests in verification plan are completed

Source code and/or functional coverage goals are met

Diminishing bug rate is observed

A certain date on the calendar is reached

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 34 / 44

Coverage-Driven Verification

Attempt to Verify that the Design Meets Verification Goals

Define all the verification goals up front in terms of
“functional coverage points”

Each bit of functionality required to be tested in the design is
described in terms of events, values and combinations

Functional coverage points are coded into the verification
environment

Simulation runs can be measured for the coverage they
accomplish

Focus on tests that will accomplishing the coverage
(“coverage driven testing”)

Then fix bugs, release constraints, improve the test
environment
Measurable metric for verification effort

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 35 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 19

Open Questions

Are There Better Measures of Coverage?

Coverage of statements in RTL would be a necessary but not
sufficient

Coverage of all states is impractical even for a design with a
few hundred state variables

Is there a way to identify a subset of state variables that
would be tractable, and would lead to better bug detection?

How would these variables be related to the behavior of the
design?

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 36 / 44

Assertions

Assertions capture knowledge about how a design should
behave

Used in coverage-based verification techniques in a simulation
environment as well as in formal verification

Assertions help to increase observability into a design, as well
as the controllability of a design

Each assertion specifies

legal behavior of some part of the design, or
illegal behavior of part of the design

Examples of assertions (will be specified in a formal language)

The fifo should not overflow
Some set of signals should be “one-hot”
If a signal occurs, then . . .

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 37 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 20

Simulation Monitors and Assertions

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 38 / 44

Equivalence Checking

Validate that the implementation of a module is consistent
with the specification

Can use simulation or formal techniques
Combinational or sequential modules

Example: Specification in RTL

module mux(input s, d0, d1,

output y);

assign y = s ? d1 : d0;

endmodule

Example: Implementation at the gate level

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 39 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 21

Design Verification

Digital systems similar to reactive programs
Digital systems receive inputs and produce outputs in a
continuous interaction with their environment
Behavior of digital systems is concurrent because each gate in
the system simultaneously evaluating its output as a function
of its inputs

Check Properties of Design

Since specification is usually not formal, check design for
properties that would be consistent with the specification

Safety “something bad will never happen”

Liveness Property: “something good will eventually happen”

Temporal Logic and variations commonly used to specify
properties

Example: Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL)

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 40 / 44

Example of Computation Tree

Traffic light controller

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 41 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 22

Dealing with State Explosion

Verification is a Very Difficult Problem

Even combinational equivalence checking problems (ATPG,
SAT) are NP-complete

Checking sequential properties is only possible for small
designs

Additional problem of generating correct “wrappers” for the
module being verified

How can we deal with the complexity?

Use more powerful computers?

Computers double in capability (assuming we can program
multi-core processors) every couple of years
Adding one state variable to a design doubles its states

Exploit hierarchy in the design

Develop powerful abstractions

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 42 / 44

Program Slicing

A Slice of a Design

Represents behavior of the design with respect to a given set
of variables (or slicing criterion)

Proposed for use in software in 1984 (Weiser)

Slice generated by a control/data flow analysis of the program
code

Slicing is done on the structure of the design, so scales well

“Static analysis”

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 43 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020



Verification of Digital Systems, Spring 2020
1. Introduction to Verification 23

Dramatic Example of Design Bug Detection and Recovery

BAE RAD750 (133 MHz) Science Lab on Mars

Mars Science Laboratory – MSL (“Curiosity”) relies
extensively on BAE RAD750 chip running at 133 MHz
During cruise to Mars (circa January 2012), MSL processes
are unexpectedly reset – no code bug is found (7 months
remaining before landing)
Misbehavior eventually traced to processor hardware
malfunction: instruction flow depends on processor
temperature
Only possible fix was via software – done successfully

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification Jacob Abraham, January 23, 2020 44 / 44

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, January 23, 2020


