

Jacob Abraham

Department of Electrical and Computer Engineering The University of Texas at Austin

> Verification of Digital Systems Spring 2020

> > January 23, 2020

Lecture 1. Introduction to Verificati

Jacob Abraham, January 23, 2020 1 / 44

Jacob Abraham, January 23, 2020 1 / 44

Goals of This Course

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

Learn the principles of verification

- Verification is a key task in designing complex chips (as well as software and systems, for that matter)
 - Takes the majority of effort in the design cycle
- We will focus on digital hardware in this class
- Class will cover both simulation-based and formal verification

Apply techniques from the lectures to designs in the lab

- Use commercial software (Cadence, Mentor Graphics)
- Formal equivalence checking
- Specification and application of assertions in simulation
- Portable constrained random tests
- Formal verification of assertions

Topics

- Introduction
- Machine learning in verification
- Formal equivalence checking
 - Binary decision diagrams, satisfiability engines
 - Use of term rewriting
 - Sequential equivalence checking
- Dynamic (simulation-based) verification
 - Simulation environments, coverage metrics
 - Assertion-based verification
 - UVM
- Formal property checking
 - Introduction to model checking and comparing finite-state machines

Jacob Abraham, January 23, 2020 3 / 44

- Techniques to detect subtle bugs
- Post-Silicon validation
- Verification challenges
- Abstractions to reduce complexity

ECE Department, University of Texas at Austin Lecture 1. Introduction to Verification

Lectures in the course

- Introduction
- Example of verification flow in industry (Alan Hunter, ARM)
- Machine learning and AI in verification (Monika Farkash, AMD)
- Formal equivalence checking (combinational)
- Finite-state machines and temporal logic
- Assertion-based verification and SystemVerilog assertions (Harry Foster, Siemens)
- Verification testbenches and UVM (Nagesh Loke, ARM)
- Sequential equivalence checking (Shaun Feng, Samsung)
- Model checking (Amit Goel, Apple)
- Quick Error Detection

ECE Department, University of Texas at Austin

- Verifying cache coherency
- Semi-formal verification (Hary Mony, RealIntent)

Lectures in the course, Cont'd

- CPU verification Challenges (Tse-Yu Yeh, Apple)
- GPU verification Challenges (John Coers, Apple)
- SoC verification

ECE Department, University of Texas at Austin

- Techniques to extend tool capacity
- Am I ready to be a verification engineer? (Ram Narayan, ARM)
- New directions in verification

Lecture 1. Introduction to V

Jacob Abraham, January 23, 2020 4 / 44

Jacob Abraham, January 23, 2020 5 / 44

Work in the Course

Lectures

- Cover fundamentals of the topics
- Notes posted on the web page
- Supplemental notes and papers on Canvas
- Homework problems
 - Solve problems posted on Canvas
- Laboratory exercises
 - Use commercial tools to apply techniques to realistic designs
- Project
 - Your opportunity to delve into a verification-related topic of interest to you
 - 2 3 person teams
 - Project report and presentation to class at the end of the semester

Jacob Abraham, January 23, 2020 6 / 44

Jacob Abraham, January 23, 2020 7 / 44

• Work on project throughout the semester

Laboratory Exercises

ECE Department, University of Texas at Austin

Lab. 1 – Logic Equivalence Checking (LEC)

- Formally check logical equivalence between a simple RTL module and its synthesized version
- Example, after DFT insertion
- Cadence Conformal LEC

Lab. 2 – Assertion Based Verification (ABV)

 Add assertions to a testbench to verify that the implementation correctly implements design intent

Lecture 1. Introduct

- Document the functional coverage
- Mentor Questa

ECE Department, University of Texas at Austin

re 1. Introduction to Verificat

ECE Department, University of Texas at Austin

Project		
Topics		
• Res	search different areas in verification to	pick a topic
• Pro	ject can focus on a particular aspect o	of verification
9	Analysis and comparison of different veri Application of verification to a real desig SUN OpenSparc (http://www.openspa Verilog Model for the DEC Alpha (http //www.crhc.illinois.edu/ACS/tool designs from http://www.opencores.or including Amber ARM (http://opencores.org/project, aml (http://riscv.org/), Ridecore (https://github.com/ridecore/ride (https://github.com/pulp-platform)	<pre>ification techniques gn (targets include the arc.net/), the Illinois : s/ivm/about.html), org/projects/ ber), RISC-V ecore/), Pulpino m/pulpino))</pre>
Presentation/Report		
• Tea	am presents results to the class (during	the last few classes)
• A concise report on the project is due at the end of the course		
ECE Department, University of	of Texas at Austin Lecture 1. Introduction to Verification	Jacob Abraham, January 23, 2020 9 /

Jacob Abraham, January 23, 2020 8 / 44

Reliability in the Life of an Integrated Circuit – II

Verification versus Validation – From IEEE "PMBOK guide"

Verification

"The evaluation of whether or not a product, service, or system complies with a regulation, requirement, specification, or imposed condition. It is often an internal process." **Are we designing the system right?**

Validation

ECE Department, University of Texas at Aus

ECE Department, University of Texas at Austin

"The assurance that a product, service, or system meets the needs of the customer and other identified stakeholders. It often involves acceptance and suitability with external customers." **Are we designing the right system?**

Historical Interest in Verification

A saga of "correct" software

- In 1969, Naur published a technique for constructing and proving software, and applied it to a text processing problem
 Informally proved correctness of about 25 lines of ALGOL 60
- Leavenworth in a 1970 review pointed out that the first line of the output would be preceded by a blank unless the first word had exactly the maximum number of possible characters in a line (MAXPOS)
- London found three additional faults in 1971 (e.g., procedure would not terminate unless word with more than MAXPOS characters encountered)
 - Presented a corrected version and proved it formally
- Goodenough and Gerhart found three further faults in 1975 that London had not detected (included the fact that the last word would not be output unless it is followed by a BLANK or NIL)

ry 23, 2020 12 / 44

23, 2020 13 / 44

Historical Interest in Verification, Cont'd

The (In)Famous Pentium FDIV Problem

Graph of x, y, x/y in a small region by Larry Hoyle

Verification Consumes the Majority of Project Time

Where Verification Engineers Spend Their Time **ASIC: Where Verification Engineers Spend Their Time** 44% Test Planning Testbench Development Creating Test and Running Simulation Debua 21% Other 19% rch Group and Mentor. A Siemens Business, 2018 Functional Verification Study © Mento Menlor Source: Wilson Research Group and Mentor Graphics, 2018 Functional Verification Study ECE Department, University of Texas at Austin Jacob Abraham, January 23, 2020 21 / 44

Verification Study

ECE Department, University of Texas at Austin

Adoption of Static (Formal) Verification Techniques

o Abraham, January 23, 2020 22 / 44

Source: Wilson Research Group and Mentor Graphics, 2018 Functional Verification Study

Verification Language (Testbench) Adoption

ECE Department, University of Texas at Austin

o Abraham, January 23, 2020 24 / 44

ECE Department, University of Texas at Austin

b Abraham, January 23, 2020 30 / 44

Verification Approaches

- Simulation (the most popular verification method)
 - Cycle based, functional simulation for billions of cycles
 - Good coverage metrics usually not available
 - Assertions used to specify behavior
 - Emulation
 - Capital intensive
 - Map design to be verified on FPGAs
 - Run OS and application at MHz rates
- Formal verification
 - Exhaustive verification of small modules
 - Formal equivalence checking
 - Property checking
- Techniques to manage complexity
 - Compositional techniques
 - Make use of symmetry
 - Abstractions

ECE Department, University of Texas at Au

Evaluating the Complete Design

- Is there a verification technique which can be applied to the entire chip?
- Only one approach which scales with the design: Simulation
- Most common technique now used in industry
- Cycle-based simulation can exercise the design for millions of cycles
 - Unfortunately, the question of when to stop simulation is open
 - No good measures of coverage
- Emulation

ECE Department, University of Texas at Austin

- Used to verify the first Pentium (windows booted on FPGA system)
- Developing another accurate model is an issue

Jacob Abraham, January 23, 2020 32 / 44

Jacob Abraham, January 23, 2020 33 / 44

When are we Done Simulating? When do you tape out? • Motorola criteria (EE Times, July 4, 2001) • 40 billion random cycles without finding a bug • Directed tests in verification plan are completed • Source code and/or functional coverage goals are met • Diminishing bug rate is observed • A certain date on the calendar is reached

Coverage-Driven Verification

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

Attempt to Verify that the Design Meets Verification Goals

- Define all the verification goals up front in terms of "functional coverage points"
 - Each bit of functionality required to be tested in the design is described in terms of events, values and combinations
- Functional coverage points are coded into the verification environment
 - Simulation runs can be measured for the coverage they accomplish
- Focus on tests that will accomplishing the coverage ("coverage driven testing")
 - Then fix bugs, release constraints, improve the test environment
 - Measurable metric for verification effort

January 23, 2020 34 / 44

Jacob Abraham, January 23, 2020 35 / 44

Assertions

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

- Assertions capture knowledge about how a design should behave
- Used in coverage-based verification techniques in a simulation environment as well as in formal verification
- Assertions help to increase observability into a design, as well as the controllability of a design
- Each assertion specifies
 - legal behavior of some part of the design, or
 - illegal behavior of part of the design
- Examples of assertions (will be specified in a formal language)
 - The fifo should not overflow
 - Some set of signals should be "one-hot"
 - If a signal occurs, then ...

Jacob Abraham, January 23, 2020 36 / 44

Jacob Abraham, January 23, 2020 37 / 44

- Digital systems similar to reactive programs
- Digital systems receive inputs and produce outputs in a continuous interaction with their environment
- Behavior of digital systems is concurrent because each gate in the system simultaneously evaluating its output as a function of its inputs

Check Properties of Design

- Since specification is usually not formal, check design for properties that would be consistent with the specification
- Safety "something bad will never happen"
- Liveness Property: "something good will eventually happen"
- Temporal Logic and variations commonly used to specify properties
- Example: Linear Temporal Logic (LTL) or Computation Tree Logic (CTL)

ECE Department. University of Texas at Austin

y 23, 2020 40 / 44

• Develop powerful abstractions

Program Slicing

ECE Department. Unive

A Slice of a Design

- Represents behavior of the design with respect to a given set of variables (or slicing criterion)
- Proposed for use in software in 1984 (Weiser)
- Slice generated by a control/data flow analysis of the program code
- Slicing is done on the structure of the design, so scales well
- "Static analysis"

ECE Department, University of Texas at Austin

y 23, 2020 42 / 44

Jacob Abraham, January 23, 2020 43 / 44

