
1

UVM Basics

Nagesh Loke

ARM CPU Verification Lead/Manager

2

▪ This lecture aims to:

▪ demonstrate the need for a verification methodology

▪ provide an understanding of some of the key components of a UVM testbench

▪ cover some basic features of UVM

What to expect …

3

ARM CCN-512 SoC Framework

4

▪ Typical processor development from scratch could be 100s of engineering years

▪ Requires parallel developments across multiple sites, and it takes a large team to verify a

processor

▪ The typical method is to divide and conquer, partitioning the whole CPU into smaller

units and verify those units, then reuse the checkers and stimulus at a higher level

▪ The challenges are numerous

▪ Reuse of code becomes an absolute key to avoid duplication of work

▪ It is essential to have the ability to integrate an external IP

▪ This requires rigorous planning, code structure, & lockstep development

▪ Standardization becomes a key consideration

▪ UVM can help solve this!

What are the challenges of verifying complex systems?

5

▪ Stands for Universal Verification Methodology

▪ Benefits:

▪ supports and provides framework for modular and layered verification components

▪ Enables:

◦ reuse

◦ clear functional definition for each component

◦ configuration of components to be used in a variety of contexts

▪ is maintained and released by Accellera committee

▪ source code is fully available

▪ is a mature product

▪ significant amount of training and support available

What is UVM and why use it?

6

TOP Env

TX Env

Key components of a UVM testbench

DUT

TX Agent

Sequencer

Driver Monitor

Functional Coverage

RX Env

RX Agent

Sequencer

Driver Monitor

Scoreboard

Interface Interface

7

UVM Sequence Item & Sequence Inheritance tree

8

UVM Component

▪ Basic building block for all

components that exercise

control over testbench or

manage transactions

▪ They all have a time consuming

run() task

▪ They exist as long as the test

exists

9

UVM Sequence Item & Sequence
▪ Sequence Item is the same as a transaction

▪ It’s the basic building block for all types of data in

UVM

▪ Collection of logically related items that are

shared between testbench components

▪ Examples: packet, AXI transaction, pixel

▪ Common supported methods:

▪ create, copy, print, compare

▪ UVM Sequence is a collection/list of UVM

sequence items

▪ UVM sequence usually has smarts to populate

the sequence but sometimes this is separated

into a UVM generator

10

TOP Env

TX Env

Key components of a UVM testbench

DUT

TX Agent

Sequencer

Driver Monitor

Functional Coverage

RX Env

RX Agent

Sequencer

Driver Monitor

Scoreboard

Interface Interface

11

UVM Sequencer & Driver
▪ A UVM sequencer connects a UVM sequence

to the UVM driver

▪ It sends a transaction from the sequence to the

driver

▪ It sends a response from the driver to the

sequence

▪ Sequencer can also arbitrate between multiple

sequences and send a chosen transaction to the

driver

▪ Provides the following methods:

▪ send_request (), get_response ()

▪ A UVM driver is responsible for decoding a

transaction obtained from the sequencer

▪ It is responsible for driving the DUT interface

signals

▪ It understands the pin level protocol and the

timing relationships

12

UVM Monitor
▪ Monitor’s responsibility is to observe

communication on the DUT interface

▪ A monitor can include a protocol checker that

can immediately find any pin level violations of

the communication protocol

▪ UVM Monitor is responsible for creating a

transaction based on the activity on the

interface

▪ This transaction is consumed by various

testbench components for checking and

functional coverage

▪ Monitor communicates with other testbench

components using UVM Analysis ports

13

TOP Env

TX Env

Key components of a UVM testbench

DUT

TX Agent

Sequencer

Driver Monitor

Functional Coverage

RX Env

RX Agent

Sequencer

Driver Monitor

Scoreboard

Interface Interface

14

UVM Agent
▪ UVM Agent is responsible for

connecting the sequencer, driver and

the monitor

▪ It provides analysis ports for the

monitor to send transactions to the

scoreboard and coverage

▪ It provides the ability to disable the

sequencer and driver; this will be

useful when an actual DUT is

connected

15

UVM Scoreboard

▪ Scoreboard is one of the trickiest and most important verification components

▪ Scoreboard is an independent implementation of specification

▪ It takes in transactions from various monitors in the design, applies the inputs to the

independent model and generates an expected output

▪ It then compares the actual and the expected outputs

▪ A typical scoreboard is a queue implementation of the modeled outputs resulting in a

pop of the latest result when the actual DUT output is available

▪ A scoreboard also has to ensure that the timing of the inputs and outputs is well

managed to avoid false fails

16

UVM Environment

▪ The environment is

responsible for managing

various components in the

testbench

▪ It instantiates and connects:

▪ all the agents

▪ all the scoreboards

▪ all the functional coverage

models

17

UVM Test

▪ uvm_test is responsible for

▪ creating the environment

▪ controlling the type of test you want to run

▪ providing configuration information to all the components through the environment

18

TOP Env

TX Env

Key components of a UVM testbench

DUT

TX Agent

Sequencer

Driver Monitor

Functional Coverage

RX Env

RX Agent

Sequencer

Driver Monitor

Scoreboard

Interface Interface

19

UVM TLM

▪ TLM port is a mechanism to transport data or messages

▪ It is implemented using a SV mailbox mechanism

▪ It typically carries a whole transaction

▪ In some cases a broadcast of a transaction is necessary (one-many); this is achieved

using an analysis port

▪ A testbench component implemented using TLM ports is more modular and reusable

20

UVM Phasing
build

check

start_of_simulation

run

final

connect

report

reset

configure

shutdown

main

Create components and allocate memory

Hook up components; key step to plumbing

Time consuming tasks

• Reset the design

• Configure the design

• Main test stimulus

• Stop the stimulus and provide time for

checking/draining existing transactions, replays or

restarts

Do end of test checks (all queues empty, all responses received)

Provide reporting, pass/fail status

Complete the test

Print banners, topology etc.

21

▪ Discussed what a verification methodology is and the need for it

▪ Looked at block diagrams with key components in a UVM testbench

▪ Covered UVM and some of it’s basic features

What we learned today …

22

▪ https://verificationacademy.com/

▪ Accelera: http://accellera.org/downloads/standards/uvm

▪ Recommend watching short videos on UVM introduction on YouTube

Useful pointers

http://accellera.org/downloads/standards/uvm
http://accellera.org/downloads/standards/uvm

