
Semi-Formal Verification

Instructor: Dr. Hari Mony
Real Intent Inc.

EE 382M-11, Verification of Digital Systems
Spring 2020

Acknowledgements:
Dr. Jason Baumgartner

Dr. Jay Bhadra
Prof. Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

4/9/2020

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 1 / 52



Verification sign-off using Formal Verification

FV has become mainstream verification methodology

Deployed in all major companies that develop complex SoCs

FV has several advantages over dynamic simulation

Ability to generate exhaustive proofs
Ability to find corner-case bugs
Simpler testbench structure
Easy/Quicker to setup; Faster to discover bugs

Can we do verification sign-off using FV?

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 1 / 52



Verification sign-off using Formal Verification

To-enable signoff, we need a signoff metric

Coverage is the obvious answer
Common metric with dynamic simulation

FV is supposed to cover 100% state-space, why is the need
for coverage?

Unintentional over-constraints in FV environment
Design-complexity – cannot achieve exhaustive coverage
leading to bounded proofs

Are there advantages of doing verification sign-off using FV?

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 2 / 52



Advantages of Verification sign-off using FV?

Bugs are found faster when using FV

Debug cycles are 30% shorter on average
>50% of ASIC design project time is spent on verification

Acknowledgment: Hao Chen et.al, DVCON 2019
ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 3 / 52



Verification sign-off using Formal Verification

We still need to perform coverage closure for sign-off

Is there a technology that can enable faster coverage closure?

YES, Semi-formal Verification (SFV)
Let’s learn SFV

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 4 / 52



Outline

Semi-formal verification (SFV) – What, Why, How?

Brief overview of various semi-formal techniques

Industrial SFV Experience

Overview of IBM’s RBSXS – FV tool with SFV technologies

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 5 / 52



Semi-formal Verification (SFV) – What, Why, How

What is semi-formal verification (SFV)?

An attempt to combine the completeness of formal techniques
with the speed, capacity and ease-of-use of simulation
Leverage formal techniques in a resource-bounded way

Why are semi-formal techniques needed?

Critical for verification sign-off using FV
Corner-case bugs too complex for sim and too deep for formal
Critical for deep bugs
Key to scaling formal algorithms to large, complex designs

How do semi-formal techniques work?

Augmenting simulation using formal techniques
Guiding simulation using formal techniques

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 6 / 52



SFV by Augmenting simulation

Verification Problem: Check for queue overflow

FV techniques such as bounded model checking (BMC) cannot
go deep enough
SIM has to get lucky – cannot consider all possible scenarios
BMC can do exh. search from a state such as queue is 1/4 full
Can Sim get the design to queue is 1/4 full state? YES!

Acknowledgment: J. Baumgartner, IBM

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 7 / 52



SFV by Augmenting Simulation

Methodologically: Manual definition of guideposts

D. L. Dill and C. H. Yang. “Validation with guided search of
state space”, DAC 1998.
Gorai et. al. “Directed-simulation assisted formal verification
of serial protocol and bridge” DAC 2006.
Nadel et. al. “An Experience of Complex Design Validation:
How to Make Semiformal Verification Work”, DVCON 2010.
Eslinger and Yeung. “Formal Bug Hunting with River Fishing
Techniques”, DVCON 2019.

Automatic or Tool Driven

Ganai et. al. “Siva: A system for coverage-directed state space
search”, J. Electron. Test. 2001
IBM SFV tool RuleBase-SixthSense
Jasper-Gold (Cycle-Swarm technique)
Synopsys FV toolkit
Mentor Graphics FV toolkit

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 8 / 52



SFV by Augmenting Simulation: Challenges

Formal search is only effective if it is triggered near a fail

Cannot improve falsification capability otherwise
Techniques that make simulation “smarter” are applicable

e.g., better input pattern generation using biases

Approaches
State prioritization: try to trigger iterations from
new/interesting states

Apply rarity-analysis to find interesting states
M. K. Ganai and A. Aziz, “Rarity based guided state space
search”, GLSVLSI, ACM 2001

Light-houses/Stepping-stones: automated generation of
guideposts towards fail

Unhit design states can be used as guideposts
Can use formal analysis to assert the lighthouses
Yalagandula et. al., “Automatic lighthouse generation for
directed state space search”, DATE 2000

State-swarming technology in Jasper-Gold is essentially
state-prioritization

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 9 / 52



Rarity-guided Simulation (Nalla et.al, ICCAD 2016)

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 10 / 52



Rarity-guided Simulation (Nalla et.al, ICCAD 2016)

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 11 / 52



Rarity-guided Simulation (Nalla et.al, ICCAD 2016)

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 12 / 52



Rarity-guided Simulation (Nalla et.al, ICCAD 2016)

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 13 / 52



Rarity-guided Simulation (Nalla et.al, ICCAD 2016)

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 14 / 52



Rarity-guided Simulation (Nalla et.al, ICCAD 2016)

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 15 / 52



Formal Bug Hunting with “River Fishing”

Identify states in the design from where you can fish for bugs

What is the selection criterion for fishing spots?

Outside interactions – e.g., standard protocol interfaces
Control and interrupts (FSMs, bus controllers, memory
controllers)
Concurrent events (Arbiters, interrupts, schedulers, switches)
Feedback, loops, and counts (FIFOs, timers, counters, data
transfers)

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 16 / 52



Formal Bug Hunting with “River Fishing”

There might be a lot of fishing spots, how do you prioritize
them?

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 17 / 52



SFV by Augmenting Simulation: Other Approaches

Target Enlargement: compute a few preimages of the target
states, in order to create a larger set of target states

Improves the probability of hitting the target states
Simulation can use greedy search strategies

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 18 / 52



SFV by Guiding Simulation

1 Create an abstract design
2 Perform exhaustive formal search

Partition the reachable state set into onion rings
i-th onion ring can reach the target in i steps

3 Guide simulation to move the (concrete) simulation state to
one that maps into the next closer onion ring

All concrete paths have corresponding abstract paths, but not
vice-versa

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 19 / 52



SFV by Guiding Simulation: Challenges

1 The abstract design is too over-approximate

No legitimate concrete trace exists that maps to abstract trace
A short abstract trace may correspond to very lengthy concrete
trace

2 A majority of concrete states hit are dead-end states

There is no path from dead-end state to a concrete state that
maps to the next abstract onion ring

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 20 / 52



SFV by Guiding Simulation: Overcoming Challenges –
Abstraction

Abstraction is the key to overcoming the challenges

Retain enough behavior to efficiently guide simulation
Needs to be small enough to enable exhaustive search

Use automatic abstraction techniques such as localization

CEGAR (counter-example guided abstraction refinement) can
be used to automatically refine the abstraction
Applicable across wide-variety of testbenches
K. Nanshi and F. Somenzi. “Guiding simulation with
increasingly refined abstract traces” DAC 2006.
Abstract models generated through localization tend to get
large quickly
Exhaustive search quickly hits a brick wall

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 21 / 52



SFV by Guiding Simulation: Overcoming Challenges –
Abstraction

Abstract using domain knowledge

Verification engineer manually abstracts the design
Restricts the applicability of the technique
S. Shyam and V. Bertacco. “Distance-guided hybrid
verification with GUIDO.” DATE, 2006
F. M. de Paula and A. J. Hu. “EverLost: A flexible platform
for industrial-strength abstraction-guided simulation” CAV’06

Abstract using data mining and domain knowledge

Aims to avoid the pitfalls of manual approach and localization
A. Parikh, W. Wu and M. S. Hsiao, “Mining-Guided State
Justification with Partitioned Navigation Tracks”, ITC 2007
Applicability not demonstrated on industrial testbenches

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 22 / 52



SFV by Guiding Simulation: Overcoming Challenges –
Abstraction

Abstract away the data-path to retain control-path registers

Most designs have data paths and controllers
Most bugs result of infrequent interactions between controllers
Simulation attempts to explore as much of the control state
space as possible, thus increasing the likelihood of finding bugs
Requires high-level design information
R. Sumners, J. Bhadra and J. A. Abraham, “Automatic
Validation Test Generation using Extracted Control Models”,
VLSI Design, 2000

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 23 / 52



Industrial SFV: Methodology and Tool Support

Synergistic Simulation/SFV Methodology needed
Common Design Model for Sim and SFV

There should not be any semantic gaps

Common Design Partitions / Units

FV typically applied to macro (sub-unit) level that require
specifications at non-documented, fluid interfaces

Common Designer Assertion/Coverage Specifications

This has largely been achieved on the assertion side, how
about coverage?

Common environment specification / Testbench drivers

Implies synthesizable testbenches?

A tool that can scale to design partitions that have
documented specifications

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 24 / 52



Industrial SFV: Formal Coverage

Are We There Yet?

What are the questions you want answered using coverage
metrics?

1 Does my FV environment allow all possible legal stimulus?
2 Are the set of Assertions complete? Do they cover all possible

design behavior?
3 How much of the design space is covered by my proven

assertions?
4 Are the bounds obtained on undetermined assertions sufficient?

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 25 / 52



Industrial SFV: What are the Coverage events?

Coverage events fall into two main buckets
1 Code Coverage

Branch coverage
Statement coverage
Expression coverage
Toggle coverage

2 Functional coverage

Property (SVA/PSL)
Covergroup

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 26 / 52



Industrial SFV: Stimulus coverage

Attempt to hit all cover events

Try to prove events that are unreachable

Ideally all cover events must be hittable

Unreachable cover events can be either due to:

Dead code: impossible for any stimulus to hit
Unreachable due to overconstraining environment

Which engine is critical for ensuring stimulus coverage
closure?

Semi-Formal Engine ofcourse!

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 27 / 52



Industrial SFV: Static Assertion COI coverage

If RTL has dead code, exclude the dead code from the analysis

Acknowledgment: Jasper Gold User Group 2018

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 28 / 52



Industrial SFV: Proof coverage

SAT-based engines can generate a proof-core; logic
responsible for proving correctness of a property

Acknowledgment: Jasper Gold User Group 2018
ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 29 / 52



Industrial SFV: Are my bounds sufficient?

“N” cycle bounded proof implies that all states reachable
within “N” cycles have been analyzed

Determining whether the bounds are sufficient is more Art
than Science

The current best approach is specifying functional cover
events that force deep exploration of state space

Use SFV engines to hit the cover events

Using a combination of designer knowledge and data from
previous verification efforts, one can possible predict a good
enough “N”

Possible application of ML/DL?

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 30 / 52



Industrial SFV: Are my bounds sufficient?

Bounded proof core can be compared against structural COI

Source code review to analyze the logic covered by the bound

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 31 / 52



Verification sign-off using Formal Verification

Acknowledgment: Jasper Gold User Group 2018

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 32 / 52



RuleBase-SixthSense: IBM’s SFV toolset

https://www.research.ibm.com/haifa/projects/verification/SixthSense/

RuleBase-SixthSense is a system of cooperating algorithms

Semi-Formal engines

Formal engines

Transformation engines: simplification / abstraction
algorithms

Transformation-Based Verification (TBV) framework

Exploits maximal synergy between various algorithms

Redundancy removal, retiming, induction, localization, ...

Incrementally chop problem into simpler sub-problems until
solvable

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 33 / 52



The Case for Transformation-based Verification

FV – exhaustive, but needs exponential resources w.r.t size

High performance design particularly difficult to verify

Speed, area and power concerns demand subtle optimization
Complex control, pipelining logic increases verification
complexity

Key Insight: Use automatic transformations to extract the
simple underlying model

RuleBase-SixthSense framework: Synergistically leverage
various transformations to simplify and decompose complex
problems

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 34 / 52



Example Transformation flow

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 35 / 52



Example RuleBase-SixthSense Engines

Boolean Reduction

Sequential redundancy removal

Min-area retiming

Sequential rewriting

Input reparameterization

Localization

Target enlargement

State-transition folding

Isomorphic property
decomposition

Fast Forward Engine

Unfolding

Liveness-to-Safety Transform

Semi-formal search

Symbolic simulation:
SAT+BDDs

Symbolic reachability

Induction

Interpolation

Property Directed Invariant
Generation (IC3)

Expert System Engine automates optimal engine sequence
experimentation

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 36 / 52



Boolean Reduction Engine (BRN)

Combinational redundancy removal techniques: BDD- and
SAT-sweeping
Can be enhanced through leveraging observability don’t cares
Kuehlmann et. al., “Robust Boolean Reasoning For
Equivalence Checking and Functional Property Verification”,
TCAD 2002.
Kuehlmann et. al., “ SAT Sweeping with Local Observability
Don’t-Cares”, DAC 2006.

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 37 / 52



Boolean Reduction Engine (BRN)

Logic rewriting algorithms, to simplify logic expressions

Lowering gate count greatly enhances SAT-based reasoning

Also tends to enhance reduction potential of other algorithms

A. Mishchenko et. al., “DAG-aware AIG rewriting a fresh look
at combinational logic synthesis”, DAC 2006

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 38 / 52



Boolean Reduction Engine (BRN)
Ternary Simulation: simulate an AIG over 3-valued logic

Sequence of 3-valued states
Converge when the current state is a subset of past states

Over-approximate reachable state set can be used for
identifying constants/equivalent signals

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 39 / 52



Sequential Redundancy Removal (EQV)

Sequential Redundancy Removal Algorithm: A Recap
1 Guess a set of redundancy candidates; sets of gates that are

expected to be functionally equivalent (modulo inversion)

2 Attempt to prove redundancy candidates accurate

3 If any redundancy candidate cannot be proven, partition the
groups to separate those that cannot be proven equivalent;
goto Step 2

4 The current groups reflect true redundancy; simplify the netlist

Superset of BRN reductions, more expensive than BRN

Very effective for bug-finding as well as proofs

Mony et. al., “Exploiting Suspected Redundancy without
Proving It”, DAC 2005

Mony et. al., “Speculative-Reduction based Scalable
Redundancy Identification”, DATE 2009

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 40 / 52



State Transition Folding (MOD)

MOD: a structural state folding engine

Each state transition in the transformed design corresponds to
multiple original transitions

Used to perform clock abstraction

Replaces Master-Slave with a flip-flop

Very powerful in designs with multiple clock domains

Reduces the minimum depth at which targets can be hit
Per Bjesse, James H. Kukula: “Automatic generalized phase
abstraction for formal verification”, ICCAD 2005

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 41 / 52



Transformation (RETiming)

RET: Min-area retiming: Reduces the number of registers by
moving them across combinational gates

Very powerful for deeply-pipelined as well as feed forward
designs
May increase AND and Input count, use in association with
BRN, CUT
J. Baumgartner and A. Kuehlmann, “Min-Area Retiming on
Flexible Circuit Structures”, ICCAD 2001
A. Kuehlmann and J. Baumgartner, “Transformation-Based
Verification Using Generalized Retiming”, CAV 2001

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 42 / 52



Liveness to Safety (LIV)

LIV: Liveness to Safety transformation

Properties categorized as either Safety or Liveness
Safety: Is my division result correct?

Finite counterexample

Liveness: Will the request eventually get a grant?

Infinite counterexample: to illustrate that grant can never
occur

Traditional liveness checking very expensive
Can transform the netlist to convert liveness to a safety
property

But doubles the number of state elements in the design

Armin Biere, Cyrille Artho, Viktor Schuppan: “Liveness
Checking as Safety Checking”

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 43 / 52



Transformation (Localization)

AXE: localization; remove logic not relevant to the target

Overapproximate – proofs in localized netlist valid
Necessary to complete proofs on huge designs

Core Idea: Use SATisfiability-based analysis to identify logic
needed to prove target unreachable for specific number of
cycles (say N)

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 44 / 52



Native Memory Modeling

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 45 / 52



Expert System (XPT)

Discovering well-tuned transformation flow non-trivial

Need to understand engines/options, rate their effectiveness
Intelligent experimentation necessary to find conclusive flow

Don’t want to delve into the engines ⇒ use the XPT engine

XPT automates the experimentation needed to solve tough
problems

Every problem is different, can the XPT engine itself be
tuned?

YES!

Mony et. al., “Scalable Automated Verification via
Expert-System Guided Transformations”, FMCAD 2004.

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 46 / 52



Why Parallel XPT

Discovering a well-tuned engine flow is nontrivial

Every problem different; complex problem requires 100’s of
transforms

XPT automates this experimentation by deploying rules

Deployed rules setup for commonly encountered problems
Deployed rules not aggressive
Certain strategies only work for a small subset of problems
XPT tries multiple strategies – but in prioritized manner

Solution: Parallel XPT with multiple strategies in coordinated
manner

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 47 / 52



Parallel Orchestration

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 48 / 52



SFV Algorithms in RuleBase-SixthSense

Augmenting Simulation

Ability to manually define guideposts and have the tool step
through them

Target Enlargement

Interleaved BMC and random simulation

State prioritization
Automatic generation of lighthouses

Guiding Simulation

Automatic generation and refinement of abstract models using
localization

Ability to tunnel between onion rings using BMC

Heuristic guidance strategy to avoid deadend states

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 49 / 52



Applications of SFV

Virtually all RuleBase-SixthSense applications benefit from
semi-formal search

Assertion-based verification

Typically done by designers with lesser experience level with
FV and toolset

Testbenches developed with little thought about “proof
strategy”

SFV very useful to wring out bugs

Reference-model based verification

Comprehensive checks, usually implemented as an abstract
reference model

Critical for verification sign-off; find corner case bugs

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 50 / 52



Applications, Cont’d

Silicon-failure recreation efforts: When a chip misbehaves . . .

On-chip debug facilities offer partial insight into cause

Usually have a good idea of property to check, “buggy region”

SFV very useful since often requires a fairly large design slice,
and bug-hunting vs. proving is “the mission”

Coverage analysis

Leverage formal algorithms to help simulation reach
hard-to-hit scenarios

Sequential equivalence checking

Semi-formal search useful to find mismatches, assist in
guessing equivalent gates

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 51 / 52



SFV: Conclusions and Future

SFV is an enabling technology for wide-spread FV usage

FV-based Verification sign-off is impossible without SFV

Future Research

The future of SFV is bright!

Take advantage of new machine architectures for improving
simulation throughput (bit-parallel simulation)

Enhance simulation through intelligent pattern generation

Methodology/Algorithms to determine if bounded coverage is
sufficient

ECE Department, University of Texas at Austin Semi-Formal Verification 4/9/2020 52 / 52


