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Agenda

What’s a GPU? 
• Specialized co-processor to render 3D objects and simulate light effects 
• Parallel processor leveraged for general compute, including machine learning 
• Integrated HW-SW System 

What are specific GPU DV challenges? 
• Complex and evolving HW-SW features 
• Rapid feature evolution 
• Scaling of large GPUs 
• Determining image correctness
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What’s a GPU?
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CPU vs GPU

CPU: Minimize latency of limited 
threads using complex control

GPU: Maximize throughput by 
scheduling many parallel threads

Control

Exe

Cache

DRAM

ExeExe Exe

DRAM
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CPU vs. GPU

CPU GPU
Cores Fewer Many

Frequency Higher Lower

Latency Low Higher

Parallelism Instruction Level Thread Level

Registers Fewer (Register Renaming) Many

Speculation Highly Leveraged (Br Prediction) Limited (no Br Prediction)

Execution Order Out of Order (Reorder Buffers) In Order

Execution Units Fewer Many

Execution Control Complex Simpler

Coherency Hardware Managed Software Managed
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Maximize Throughput, Hide Latency
GPU

• High throughput SIMD leveraging Thread Level Parallelism 

- independent threads executing the same program 

• Threads grouped into Threadgroups (aka Blocks or Workgroups) 

- shared local memory 

• Threadgroups broken into SIMD Groups (aka Warps or Wavefronts) 

- identical, independent, lockstep programs of multiple threads 

• High memory latency, high memory bandwidth 

- switch SIMD Group execution to maintain high shader occupancy
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Shaders

•Programs that execute on the GPU 

•Written in a C-like shader language 

•Compiled, linked and combined into a larger program

Varyings

Attributes

Uniforms Uniforms

Output 
Buffer

Vertex 
Shader

Fragment 
Shader
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3D Full Frame
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Vertex Processing
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Vertex Attributes
Vertex Processing

•Position Coordinates 

•Color & Alpha (RGBA) 

•Normals 

•Texture Coordinates 

•Material Properties for lighting
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Transformation and Projection
Vertex Processing

• Model Transform        : arrange objects in the world 

• View Transform          :  position and orientation of the camera 

• Performed by rotation, translation and scaling of vertices  
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Projection Transform
Vertex Processing

frustum

• Projection space 

- set the camera’s field of view, “frustum” 
- adjust focal length 
- adjust zoom factor 

• Perspective projection 

- adjust for distance
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Clipping and Culling
Vertex Processing

frustum

• Culling 
- remove hidden triangles due to 

backface, occlusion, or view 
frustum 

• Clipping 
- clip triangles that intersect the 

frustum 
- interpolate the attributes to the 

new vertices
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Key Concepts
Vertex Processing

• Primitives 
- points, lines, triangles 

• Vertex Shading 
- determine position, transformations, evaluate attributes 

• Transformation and projection 
- rotation, translation, and scaling of geometry 

- distant objects are smaller 

• Clipping and culling 
- remove offscreen and hidden geometry for efficiency
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Rasterization
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Translate 3D image to 2D
Rasterization

• Determine the pixels in the screen 
covered per triangle 

• Potential pixels are called “fragments”
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Image Quality Feature
Anti Aliasing

• Anti aliasing helps reduce pixelation by blending edges 
- multiple techniques 

• Multi Sampling AA ( MSAA ) 
- blend color for sub pixels with multi-triangle coverage 
- requires coverage mask, resolved in shader 
- single shader execution per fragment 
- complicates SIMD execution



Copyright © 2020 Apple Inc. All rights reserved.EE 382M-11,  Lecture 21, 9th April 2020

Key Concepts
Rasterization

• Triangle Setup/Primitive Assembly 
- Differentials, edge equations 

• Triangle traversal 
- iterate and check each sample for coverage 
- generate fragments 

• Anti-Aliasing 
- multiple techniques with different trade-offs
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Fragment Processing
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Simple Shading
Fragment Processing

• Determine the attributes at each pixel based on the vertex attributes of the triangle. 

• Uses a fixed interpolation function.
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Texture Mapping 
Fragment Processing

• Textures are saved images or other data  
- “texels” = texture pixels 

• Map texels -> pixels on geometry 
- box filter - nearest neighbor 
- bilinear - interpolate in 2D 
- bicubic - weighted sum of local texels 
- trilinear - interpolate in 3D 
- mipmaps - lower resolutions of texture
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Other uses for textures
Texture Processing

• Normals 

• Shadows 

• Material properties
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Lighting - Phong Model
Fragment Processing

•Ambient Lighting 
- Approximates global illumination 

•Diffuse Lighting 
- Direct impact of light on an object 

•Specular Lighting 
- Bright spots on shiny objets
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Simple Per Fragment Tests
Fragment Processing

Scissor 
Test

Fragment 
data

Alpha 
Test

Stencil 
Test

Depth 
Test Blending

Framebuffer

Logic Op
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Key Concepts
Fragment Processing

• Interpolation of fragments 

- simplest determination based on vertex attributes 

• Per pixel shading computations 

- creates more complex effects than simple interpolation 

• Texture Mapping 

- mapping an image onto a triangle 

• Lighting 

- how surfaces respond to light and project colors 

• Per Fragment tests 

- check each pixel location
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GPU DV Complexity
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GPU DV Challenges
• Complex system of hardware + software 

- Driver manages hardware directly->hardware not fault tolerant 

- Software will continue to optimize through hardware lifetime 

- API does not dictate pixel-level accuracy 

• Rapid feature evolution 
- Graphics algorithms and techniques continuously innovated and enabled 

- GPU ISA evolves rapidly 

- Performance optimizations, workload distribution change with workload evolution 

• Full system model scaling 
- footprint and run time 

• Determining Image Correctness 
- many units with approximations and imprecision
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GPU Verification Flow
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Multi-faceted RTL DV Approach
• Hierarchical Simulation 

- module->block->sub-system->GPU level 

- intensive directed and directed-random 

• FV Property Checking 
- small blocks, design components, bug hunting, ECO validation 

• Emulation/FPGA 
- Large GPU workloads & Full Frames 

- Performance and Power 

• Full Virtual System with Software 
- ensure HW-SW validation 

- silicon readiness
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Hello, Triangle!
Common First Test
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Utah Teapot
Classic 3D Graphics Model
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Establishing reference images
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Image differences/variance
Determining Image Correctness
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Image differences/variance
Determining Image Correctness
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Image differences/variance
Determining Image Correctness
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Dependencies can be complex!
Debugging Images
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Key Takeaways
Determining Image Correctness

• Many combined approximate techniques to create an image 

- Image validation insures the resultant image meets expectations 

• Resulting image has subjective aspects 

- Multiple results may be OK 

- Understanding HW/SW/application intent is critical 

• Verified hierarchically — system level results need special validation 

- Modules, Blocks and Sub-systems verified with traditional DV, FV 

- GPU level directed-random stress with predictable results 

- Image validation focused on directed testing 

- Full system validation ensures HW-SW correctness and performance 

• Frame to frame smoothness important
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Important DV skills

• Architecture & Micro-architecture 
- Know how it all works and what might go wrong 

• Software Engineering 
- Efficiency in architecting, simulating, scaling, debugging complex OOP environments 

• Probability 
- Grit and paranoia about rare cases, but prioritize the common ones 

• Psychology 
-Question, challenge; creativity, curiosity
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