QED & Symbolic QED

Subhasish Mitra

Department of EE & Department of CS Stanford University

Acknowledgment: Students & Collaborators

Scalability Barriers

- System failure reproduction
 - Asynchronous I/Os, clock domains
- Full-system simulation for golden response
 - 10⁶ -10⁹X slower than silicon

J. Stinson (ex-Intel)

Post-silicon costs rising faster than design cost

QED Post-silicon Electrical bugs, logic bugs, system-level test

Existing Techniques Inadequate • Very long error detection latencies Deadlock detection Design-specific assertions Self-checking tests Store readback tests Checkpointing etc...

QED Coverage Considerations

- Challenge
 - Intrusiveness: coverage impact ?
- Systematic solutions
 - QED family tests
 - Hardware-enhanced QED

E-QED Results		
Flip-flop candidates	18 (out of 1 million) 50,000× localization	
Area impact	2.5% (actually 0%)	
Effort	Automatic	
Runtime	~ 9 hours	
Failure reproduction	<u>None</u>	
Full system simulation	<u>None</u>	
OpenSPARC T2 SoC (500M transistors)		

QED Effective for Logic Bugs

- "Difficult" logic bugs
 - Industrial bug databases
- Processor cores, accelerators, uncore, power management

[Lin IEEE TCAD 14]

39

Activation Criteria × Effects

Activation Criteria

- 1. Two stores in X cycles
- 2. Two stores in X cycles to same cache line
- 3. Two stores in X cycles to adjacent cache line
- 4. Specific sequence of loads and stores
- 5. Two branches in X cycles
- 6. Forwarding data X to inst Y
- 7. Two icache misses in X cycles
- 8. Random

Bug effects

- A. Cache coherence msg. dropped
- B. Cache coherence msg. delayed
- C. Store not allocated a cache line
- D. Update delayed by Z cycles
- E. Loaded value corrupted
- F. Data in main memory corrupted
- G. Data in L1\$ corrupted
- H. Jump to wrong address
- I. Error in instruction operand
- J. Wrong instruction decoded

QED Automation

- Application test, random test, ...
 - Source code, assembly, binary

Symbolic QED • Pre-silicon • Logic bugs: processors, accelerators, SoCs [Lin ITC 15, Singh IEEE TCAD 18, Lonsing ICCAD 19]

Traditional BMC vs. Symbolic QED			
	Traditional BMC	Symbolic QED	
Properties	Manual	Automatic QED checks (Universal property)	
Design size	Small blocks	Large SoCs	
		50	

Traditional BMC Challenges

- 1. What property?
- 2. Design size?

5

What Property?

- Bugs not known *a priori*
- Manually written: time-consuming
- Automatic: challenging for difficult bugs
- Too many cycles to detect bugs

"Universal" Property: QED Check

CMP Ra == Ra'

- Ra original register
- Ra' corresponding duplicated register
- Ra ≠ Ra' error detected

Need Input Constraints

• If unconstrained, BMC may choose any inputs

Ra **←** 1

Ra' ← 2

CMP Ra == Ra'

• False fail – not a bug

57

Input Constraints

- Original sequence then duplicated sequence
 - CMP Ra == Ra' after both executed
- Enforced by QED module automatically
 - Only during BMC
 - Not in fabricated design

Starting State Important

• If unconstrained, BMC may choose any initial state

- QED-consistent starting state
 - Run "simple" QED test
- More sophisticated
 - [Fadiheh DATE 18, Devarajegowda DATE 20]

Symbolic QED Study: A Major Company RISC V-based SoC (late-stage design) 1. New corner-case bugs found Previously unknown (despite countless simulations, emulation) 2. All "tricky" synthetic bugs correctly analyzed No spurious counterexamples 3. Symbolic QED setup: 3 person days only

BUT...

- Big designs ?
- Solution: Partial instantiation

Case Study: OpenSPARC T2 SoC

- 92 difficult logic bugs
 - Commercial multi-core SoCs
 - Core, uncore, power management bugs

OpenSPARC T2 SoC 500 Million Transistors

75

100X Reduction in Time

Traditional	Automatic Symbolic QED
Weeks to months (manual)	20 mins. to 7 hours

10 ⁶ X Reduction In Bug Trace Length		
Traditional	Automatic Symbolic QED	
Millions of cycles	Less than 30 cycles	
 Short bug trace 		
Easier to understand		
Easier to fix bugs	78	

More Opportunities

- Hardware security
 - Derive new attacks: beyond Spectre, Meltdown
 - Trojans
- Firmware
- Large-scale systems

[Fadiheh DATE 19]

QED & Symbolic QED

- Pre-silicon, post-silicon
 - Automatic, overnight, billion-transistor SoCs
- Widely applicable
 - Core, uncore, accelerator, bugs, defects
- More opportunities
 - Security, full systems, System-level Testing