
1/23/20

1

Alan Hunter
23th Jan 2020

Verification at Arm

1

2 © 2020 Arm Limited

Overview
• The focus will be on CPU cores
• Arm then and now
• How we think about DV
• DV history
• A side note on complexity
• So we just need to boot an OS right?
• What a real project looks like by the numbers
• Current directions and improvements
• Future directions

2

1/23/20

2

3 © 2020 Arm Limited

Arm history

• Founded in November 1990
• With 12 people from Acorn computer…
• And Robin Saxby as CEO
• First office was a barn outside Cambridge,

UK

• Internal simulator (asim) + full custom design
flow

3

4 © 2020 Arm Limited

ARM1 Visual Simulator

http://visual6502.org/sim/varm/armgl.html

4

1/23/20

3

5 © 2020 Arm Limited

Arm today
• More than 7500 people worldwide many added last year
• 47 main offices worldwide
• Wide range of products from CPUs, GPUs and Video Processors to System IP, Physical IP,

IOT devices, IOT infrastructure / data analytics, eSim and various software stacks
• We are part of a very large eco-system

• Industry standard simulators + industry standard ASIC design and implementation flows

5

6 © 2020 Arm Limited

Some of our partners

6

1/23/20

4

Design Verification

7

8 © 2020 Arm Limited

How we think about design verification
• Verification partitioned into different levels

• System-level – realistic system implementation
• Kit-level – higher stress sub-system level
• Top-level – full CPU(s) + Memory system
• Unit-level – Interesting units in isolation (L2, LS, Core, IF …)
• Multi-unit – interesting multiple units together (LSL2, MP tb)

• And different techniques
• Simulation
• Static methods
• Emulation/FPGA

8

1/23/20

5

DV History

9

10 © 2020 Arm Limited

DV history
• It all started with

• Architectural Validation Suite(s) (AVS) – hand written assembler tests exercising architectural features
• Device Validation Suite(s) (DVS) – hand written assembler tests exercising micro-architectural and

implementation features

• And that was it (for the most part)
• But we realized that top-level testing was insufficient (although it is very much required)

10

1/23/20

6

11 © 2020 Arm Limited

DV history
• So that brought in the era of unit-level testbenches

• Initially in Vera and ‘e’, but latterly in SystemVerilog
• Mostly home-grown base class library, but now completely transitioned to UVM
• Plus functional coverage, portable checkers, assertions, offline checkers, ISS Compare …

• It was also a time of learning what makes a good testbench
• Trading off testbench performance and maintainability vs. details of checking
• Portability of checkers and code for unit è multi-unit and unit è top-level

11

12 © 2020 Arm Limited

DV history
• Emulation and FPGA prototypes required for long single thread execution

• OS boots and stress testing
• Custom bare metal stress testing that takes many hours to run

• Rise of formal methods
• Initially expert users only
• But designer bring up is rapidly broadening appeal
• Adding process here allows broader adoption – now a major part of our process

12

1/23/20

7

13 © 2020 Arm Limited

DV history

3 3 3
Confidential

VALIDATION

SPACE

COVERAGE DRIVEN
DIRECTED RANDOM
UNIT LEVEL
TESTBENCHES

UNIT LEVEL
SIMULATION

RTL CODE
COVERAGE

FUNCTIONAL
COVERAGE

UNIT LEVEL
ASSERTIONS

Processor DV Methodologies
!  No single methodology covers the entire validation space

FORMAL
PROPERTY
CHECKING/

ASSERTIONS
STATIC

DETERMINISTIC
TEST CODE
(AVS/DVS)

RANDOM
CODE

GENERATION RTL CODE
COVERAGE

TOP LEVEL
SIMULATION

TOP LEVEL
ASSERTIONS

FUNCTIONAL
COVERAGE

REFERENCE
MODEL FPGA

PROTOTYPING

EMULATION
DEBUGGING

OS
BOOTING/

APPS

REAL TIME
BENCH-
MARKS

13

Verification
Complexity

14

1/23/20

8

15 © 2020 Arm Limited

Diversion on complexity

FEQ 12 entries

6x4

ACP

~10

AC

~12

Instructions - 4 types
512 bit data - 4 ports
Address

10-50 cycles

L2 in the abstract

Cortex-A15 L2

15

16 © 2020 Arm Limited

By the numbers
• Simplified view of L2:

• Reachable “state” space – 5x1030

• Number of seconds since Big Bang ~5x1017*

• Realistic reachable state space is much bigger

* According to http://www.physicsoftheuniverse.com/numbers.html

16

1/23/20

9

OS suitability

17

18 © 2020 Arm Limited

So booting an OS is stressful right?

Cumulative	bug	graph

Cumulative

First Linux boot

18

1/23/20

10

Case study

Neoverse N1

19

20 © 2020 Arm Limited

Cortex-A72 (Maia) overview

• Full implementation of the base
ARMv8 architecture

• AMBA 4 ACE or CHI master
interface

• ECC and parity protection for all
SRAMs

• Aggressive CPU and L2 power
reduction capability

• Support for 4M L2 feature
• Support for ACP port

performance improvements

20

1/23/20

11

21 © 2020 Arm Limited

Neoverse® N1

• Full Armv8.2-A A64, A32 and T32 ISA
• Armv8.4-A Dot product support
• AArch32 @ EL0 only, AArch64 EL0-EL3
• TrustZone® technology support
• Full Armv8.2-A MMU support
• Superscalar, variable-length OOO pipeline
• RAS and SPE extension support
• Load acquire (LDAPR) instruction support (v8.3)
• 256-bit CHI-5 direct connect to CMN-600
• Optional strictly inclusive L1/L2 I-Cache

Neoverse® N1 CPU

2Core 1

512kB / 1MB Private L2 ECC

CoreSight™ multicore debug and trace

Neoverse N1
Armv8-A (v8.2)
32/64-bit CPU

NEON™ AdvSIMD

Crypto

64KB I-Cache Parity 64KB D-Cache ECC

1x 256-bit AMBA® 5 CHI Direct-Connect

Asynchronous Bridges

64C System: CM N-600 32xM P2 1M B L2 @ 2.8GHz, 64M B SLC @2GHz, 8xDDR4-3200
Performance: bare-metal SimPts emulation measurement in 64C system
Freq: 16nm Vnom=0.8V, Vmax=1V, 7nm Vnom=0.75V, Vmax=1V
Power: Aarch64 Dhrystone dynamic power, leakage at Tj=105C
Area: post-scaled in mm 2

Configuration 7nm

Performance 36.4 SPECint2k6 1T @ 2.8GHz 64C system

Freq (Vnom-Vmax) 2.6GHz – 3.1GHz

Power (core) 195 mW/GHz

Ptot (2.6GHz,105C) 650 mW

Area (core, 1MB) 1.47 mm2

Headline Features

21

22 © 2020 Arm Limited

Unit level testbenches

• Instruction Fetch Testbench
• Clean slate UVM SystemVerilog testbench
• Cycle agnostic most of the time; cycle accurate where required
• Internal monitors and checks to detect issues at point of failure
• Stimuli are randomly generated and controlled by config files
• Detailed functional coverage model to verify stimulus

• Memory System Testbench
• Clean slate UVM SystemVerilog testbench
• Single and multi-cluster setup; individual blocks either model or RTL
• Majority of stimulus able to run on any config
• Extensive unit test environment to stop testbench regression
• Detailed functional coverage and statistical coverage

Fetch RTL
Predict

Fetch

ITLB

FQ I$ Data

FB

Predictors BX

Steering

SP Branch

Fix-up

I$ TagN
FA

P0 P2 P1/P2/P3

if_ls_cast Agent

if_ls_rd Agent ls_if_snoop
Agentif_ls_tbw Agent

is_if Agent

if_is Agent

if_id Agent

pred_ftch
Agent

ftch_pred
Agent

ct_if* Agents

errinj Agent

Predict Model

Fetch Model

ITLB Model ICache
Model

Predictor
Model BX Model

PCRF
Tracking

Core Model

Shared Models

Memory
Model

Page Table
Model

Address
Generator

SPR
Model

22

1/23/20

12

23 © 2020 Arm Limited

Unit level testbenches (cont.)

• Core Testbench
• Clean slate UVM SystemVerilog testbench
• Covers from pipeline post fetch to completion
• Decode translates Arm instruction into µops
• Rename does register renaming
• Dispatch pushes µops into execution units
• Issue does µop issue out-of-order to execution units
• Commit manages reg dealloc, order & exceptions
• Is primary architectural correctness checking
• Contains ID, RN, CT, IX & VX
• Runs with ISSCompare as primary checker
• Plus local µArch checkers to isolate issues quickly

23

24 © 2020 Arm Limited

Unit level testbenches (cont.)

• Debug & Trace Testbench
• UVM SystemVerilog testbench with C++ checker
• Three active agents that drive respective interfaces
• Each agent has

• Random stimulus generator
• BFM
• Driver attached to DUT

• C++ checker is called through SystemVerilog DPI interface

ATB Agent

APB Agent

Core Agent

DUT_TOP

APB
Protocol
Checker

ATB
Protocol
Checker

DUT

ETM
Compare

Model
(C++)

24

1/23/20

13

25 © 2020 Arm Limited

Unit level testbenches (cont.)

• GIC Testbench
• Clean slateUVM SystemVerilog testbench
• Shared Ares UVM infrastructure

Distributor
Monitors

CPU IF
Monitors

T
o
p
L
e
v
e
l

C
o
n
t
r
o
ll
e
r

CPU Interface Model

Scoreboard
Coverage

Distributor
BFM

Distributor
Stimulus
Generator

CPU Interface Unit DUT CPU BFM

CPU
Stimulus
Generator

FIQ/IRQ

FIQ/IRQ

AXI

VFIQ/VIRQ

Bypass
VFIQ/VIRQ

System
Errors

25

26 © 2020 Arm Limited

Top-level testing

• Vehicle for:
• Checking architectural compliance
• Running random instruction sequence generators
• Power aware simulation with UPF file
• Broader static configuration space
• Dynamic configurations

– Clock ratios, page table attributes, chicken bits
• Dynamic irritation

– Random bus traffic, random events (WFI, FIQ, IRQ…)

26

1/23/20

14

27 © 2020 Arm Limited

System-level testing

• Hardware Emulation
• For OS boots, baremetal testing, Emulator optimized RIS

• FPGA
• For faster execution, but poorer debug, so lots of long random testing to pull out any potential system

issues
• Memory ordering litmus testing (based on DIY)(very long running) ~2 weeks @ 10MHz

27

28 © 2020 Arm Limited

Formal verification

• Formal team worked on all units
• All units had many embedded properties and several end-to-end checkers
• Full proof of floating point (VX) instructions using ACL2 theorem prover
• Sequential equivalence check of abstract C model with implemented RTL
• Detailed reset abstractions and targeted black boxing to prove complex corner cases around LSU

(biggest and most complex unit in the design)
• First trials of cone of logic analysis and coverage (somewhat inconclusive)

28

1/23/20

15

29 © 2020 Arm Limited

Regressions

Stimulus Cycles Run

Core tb 448x109 cycles

Fetch tb 2580x109 cycles

Memsys tb 890x109 cycles

GIC 54x109 cycles

DT tb 170x109 cycles

Stimulus Cycles Run /No. Tests

Raven 1290x109 cycles

Anvil 410x109 cycles

GenasmMP 250x109 cycles

AVS 97594 tests

DVS 6653 tests

Unit level Top level

29

30 © 2020 Arm Limited

System Validation

Stimulus Cycles

AEGIS 3x1012 cycles

PINAKA 2x1012 cycles

Stimulus Cycles

HWRIS 2.2x1015 cycles

Emulation FPGA

30

1/23/20

16

31 © 2020 Arm Limited

Team sizes

• Fairly small team:
• Around 40 designers working on RTL development
• Around 50 DV engineers here in Austin
• Around 10 Top level and System level verification in BLR

• Recent / Current projects in Austin
• Cortex-A72
• Cortex-A76
• Cortex-A77
• Neoverse N1
• Cortex-A76AE
• Zeus + 9 other projects currently

31

Current directions

32

1/23/20

17

33 © 2020 Arm Limited

Current directions and improvements
• Completed move to UVM based testbenches

• Putting TB linting tools in place to help with style and quality of code

• Enhanced system-level verification
• Statistical coverage
• Enhanced formal verification

33

34 © 2020 Arm Limited

Completed move to UVM
• New projects have been moving to UVM when they can

• But it takes a long time to deprecate old testbenches (but we are done now)

• We had a chance to clean slate for some of the current projects
• So there has been some significant re-writes (not without issues)
• Some ground up development (using more modern software development ideas (unit test, pairs

programming, agile development, etc.))

• Also taking the time to re-evaluate current testbench methodology
• So we don’t lose anything in the switch over
• So we can build more maintainable testbenches for the future
• Optimize testbench performance out of the gate, but without optimizing too early

• Starting to look a portable stimulus standard / graph-based stimulus to see if that could
aid generation and coverage closure

34

1/23/20

18

35 © 2020 Arm Limited

Enhanced system-level verification
• More configurations of our IP in different system settings

• Try and find more bugs earlier in the process

• Additional features to aid silicon/FPGA debug
• Always adding stimulus to try and further stress integration testing

• Tie back to unit-testbenches to further improve stimulus (virtuous cycle)

• Additional bare metal stimulus and checking to enhance hard to hit areas
• Areas like memory barriers, relaxed memory semantics and SMT

35

36 © 2020 Arm Limited

Statistical Coverage
• Finding relationships between disparate data
• Correlations may exist beyond single simulation
• Independent of pass/fail status

• Fairness
• Arbitration
• Performance

• Improves stimulus
• Improves checking quality

36

1/23/20

19

37 © 2020 Arm Limited

Enhanced formal verification

• Formal property verification
• Formal testbench development (tracking code, end to end checkers, interface constraints, and embedded

assertions)
• Formal coverage collection and fine tuning the coverage model
• Automated deadlock detection flows (this is different from the deadlock detection app)

• Whatever this flow finds, truly is a deadlock, but it will not necessarily find all possible deadlocks
• Formal X-propagation, and X-checking (RTL tainting)
• Sequential equivalence checking (against RTL, or a C/SystemC model)
• Bug hunting flows as opposed to proofs for all the above

• Scales well with design size (as opposed to proofs)
• Is not exhaustive

• Forward progress checking through custom forward progress checks
• Reset lock step analysis for Automotive Enhanced split lock cpus
• Full ACL2 based proof of floating-point hardware (David M. Russinoff; see book - Formal

Verification of Floating-Point Hardware Design)

37

Future directions

38

1/23/20

20

39 © 2020 Arm Limited

Future directions

• Looking at machine learning techniques for many areas, including
• Testbench coverage closure
• Rapid debug analysis
• Testbench constraint optimization
• Implementation layout optimization

• All verification results go into a “data lake” for offline analysis
• Data analysis back end coming online now (EAP) (all Arm based compute)
• Allows for data mining previous verification projects

• Enabling ISA formal verification
• Extracting formal ISA properties directly from ARMARM pseudocode
• Using those properties to bug hunt with formal tools

39

Conclusions

40

1/23/20

21

41 © 2020 Arm Limited

Conclusions
• We have a lot of history to deal with (e.g. we have 94 AVS suites – some of which are 20

years old)
• So it can be slower than we like to move to new technologies sometimes
• But there must be a balance of the old and the new
• The goal of any new technique is to bring quality and efficiency to the verification

process
• To do that we have to measure everything

41

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

© 2019 Arm Limited

42

