

Overview

- The focus will be on CPU cores
- Arm then and now
- How we think about DV
- DV history
- A side note on complexity
- So we just need to boot an OS right?
- What a real project looks like by the numbers
- Current directions and improvements
- Future directions

2 © 2020 Arm Limited

Arm history

3

3

© 2020 Arm Limited

- Founded in November 1990
- With 12 people from Acorn computer...
- And Robin Saxby as CEO
- First office was a barn outside Cambridge, UK
- Internal simulator (asim) + full custom design flow

arm

Arm today

© 2020 Arm Limited

- More than 7500 people worldwide many added last year
- 47 main offices worldwide
- Wide range of products from CPUs, GPUs and Video Processors to System IP, Physical IP, IOT devices, IOT infrastructure / data analytics, eSim and various software stacks
- We are part of a very large eco-system
- Industry standard simulators + industry standard ASIC design and implementation flows

_	
_	
_	

+															
+	C	r 'n	$\mathbf{n}_{\mathbf{r}}^{\mathbf{r}}$					De	esig	;n `\	/er	ific	atio	° ON °	
+															
+															
+															
+															
+															
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

How we think about design verification • Verification partitioned into different levels • System-level – realistic system implementation • Kit-level – higher stress sub-system level • Top-level – full CPU(s) + Memory system • Unit-level – Interesting units in isolation (L2, LS, Core, IF ...) • Multi-unit – interesting multiple units together (LSL2, MP tb) And different techniques • Simulation Static methods Emulation/FPGA arm 8 © 2020 Arm Limited 8

	a	rn	n ⁺				DV	′ Ĥi	sto	, VN	
										+	
9											

DV history

- It all started with
 - Architectural Validation Suite(s) (AVS) hand written assembler tests exercising architectural features
 - Device Validation Suite(s) (DVS) hand written assembler tests exercising micro-architectural and implementation features
- And that was it (for the most part)
- But we realized that top-level testing was insufficient (although it is very much required)

```
10 © 2020 Arm Limited
```

DV history So that brought in the era of unit-level testbenches Initially in Vera and 'e', but latterly in SystemVerilog Mostly home-grown base class library, but now completely transitioned to UVM Plus functional coverage, portable checkers, assertions, offline checkers, ISS Compare ... It was also a time of learning what makes a good testbench Trading off testbench performance and maintainability vs. details of checking Portability of checkers and code for unit → multi-unit and unit → top-level

a	rn	\mathbf{n}^{\dagger}				*	/er	ific	atio	on.		
						Complexity						

	C	rn				ÖS	5 SL	uita	bil	ity	
17											

	a	rn					cas	se s	stu	dv	
							+				
								⁺ N(eovers	∗ e N1	
19											

Regressions			
Unit lev	el		Top level
Stimulus	Cycles Run	Stimulus	Cycles Run /No. Tests
Core to Fetch tb	448x10 ^s cycles 2580x10 ⁹ cycles	Raven	1290x10 ⁹ cycles
Memsys tb	890x10 ⁹ cycles		
GIC	54x10 ⁹ cycles	Anvil	410x10 ³ cycles
DT tb	170x10 ⁹ cycles	GenasmMP	250x10 ⁹ cycles
		AVS	97594 tests
		DVS	6653 tests
29 © 2020 Arm Limited			arr

0	rn	∩ ⁺			÷	Jrr(ent	: di	rec	tio	₊ NS ₊	

Enhanced formal verification

- Formal property verification Formal testbench development (tracking code, end to end checkers, interface constraints, and embedded assertions)
- Formal coverage collection and fine tuning the coverage model
- Automated deadlock detection flows (this is different from the deadlock detection app) • • Whatever this flow finds, truly is a deadlock, but it will not necessarily find all possible deadlocks
- Formal X-propagation, and X-checking (RTL tainting)
- Sequential equivalence checking (against RTL, or a C/SystemC model)
- Bug hunting flows as opposed to proofs for all the above Scales well with design size (as opposed to proofs)
 Is not exhaustive
- Forward progress checking through custom forward progress checks •
- Reset lock step analysis for Automotive Enhanced split lock cpus •
- Full ACL2 based proof of floating-point hardware (David M. Russinoff; see book Formal • Verification of Floating-Point Hardware Design)

37 © 2020 Arm Limited arm

0	rn	∩ ⁺			ţ	ut	ure	di	rec	tio	₊ NS	

C	rn					°,	n	clu	sin	, nc	
+	+	+				+	*		*	+	

Conclusions

- We have a lot of history to deal with (e.g. we have 94 AVS suites some of which are 20 years old)
- So it can be slower than we like to move to new technologies sometimes
- But there must be a balance of the old and the new
- The goal of any new technique is to bring quality and efficiency to the verification process
- To do that we have to measure everything

41 © 2020 Arm Limited

arm

C	rn	\mathbf{n}^{\dagger}					⁺ TI	na'nk	Yỏu	
+	+	+						₅Da	nķe	
								M ⊮	erci संक्री	
							ָ לא	りが	とう	
							+	Ğra	cias	
							÷.	, Ki	itos	
							감시	유합니	니다	
								৸ৢ৸	ald 55	
								ر م	™چر תודו	
© 2019 Arm I	Limited							+	+	
© 2019 Arm I	Limitet									