6. Symbolic Trajectory Evaluation, Term Rewriting

Jacob Abraham

Department of Electrical and Computer Engineering The University of Texas at Austin

> Verification of Digital Systems Spring 2020

> > February 6, 2020

Motivation for Symbolic Trajectory Evaluation

- Equivalence checking between RTL and circuit schematics is difficult for some circuits (e.g., custom arrays)
 - Critical timing and self-timed control logic
 - Large number of bit-cells
 - Inherently complex sequential logic blocks
 - Dynamic logic

ECE Department, University of Texas at Au

ECE Department, University of Texas at Austin

- Traditional tools fail on such circuits
 - Very large state space, too many initial state/input sequences for simulation-based tools
 - Boolean equivalence tools only check static cones of logic, do not capture dynamic behavior

Acknowledgements: J. Bhadra, J. Harrison, K. Claessen, J.-W. Roorda, N. Krishnamurthy, A. K. Martin, H. Anand, J. Yang, F. Xie

b Abraham, February 6, 2020 1 / 1

Jacob Abraham, February 6, 2020 1 / 1

Symbolic Trajectory Evaluation Symbolic Trajectory Evaluation (STE) is a high-performance simulation-based model checking technique, originally invented by Seger and Bryant STE uses a combination of *three-valued simulation and symbolic simulation* STE uses a combination of *three-valued simulation and symbolic simulation* The specification says that out represents the output of a 3-input AND gate with in0, in1, and in2 as inputs An implementation of the above spec

- Any input having assigned to 0, makes the output 0
- Other inputs do not matter meaning could be 0 or 1 (X)
- If we introduce a new value (X = don't care) in the simulation we need to evaluate the outputs of standard gates

		x	y	x.y	x	y y	1	x + y
		0	0	0	0	0) (0
		0	1	0	0	1	. :	1
x	$\neg x$	1	0	0	1	C)	1
0	1	1	1	1	1	1	.	1
1	0	X	0	0	X	0		Х
X	Х	0	Х	0	0	>		Х
		Х	1	Х	X	1		1
		1	Х	Х	1			1
		Х	Х	Х	Х			Х
		ecture 6	Symbolic	Trojectory	valuatio	n, Terr		

Three-valued symbolic simulation

- In STE we combine the efficiency of three-valued simulation with the preciseness of symbolic simulations
- Use this combination by expressing the four 3-valued simulation runs as only one 3-valued symbolic simulation run
- Each assignment of 0 and 1 to two variables represents one 3-valued simulation run and since there are 4 possible assignments, and 4 3-valued simulation runs we can achieve this reduction (symbolic encoding)

Jacob Abraham, February 6, 2020 9 / 1

• Symbolically,

ECE Department, University of Texas at Austin

 $\begin{array}{l} ((\neg p. \neg q) \rightarrow \text{in0 is 0}) \text{ and} \\ ((\neg p. q) \rightarrow \text{in1 is 0}) \text{ and} \\ ((p. \neg q) \rightarrow \text{in2 is 0}) \text{ and} \\ ((p. q) \rightarrow (\text{in0 is 1}) \text{ and (in1 is 1) and (in2 is 1)}) \\ \implies (\text{out is } (p. q)) \end{array}$

Dual-rail encoding

ECE Department, University of Texas at Austin

• The value of a 3-valued variable x can be represented by 2 Boolean variables $x = (x_0, x_1)$

x	(x_0, x_1)
0	(1,0)
1	(0,1)
Х	(0,0)

• Operators can be defined as follows

• NEG: $\neg x = \neg(x_0, x_1) = (x_1, x_0)$

 \bullet For 2 3-valued variables $x=(x_0,x_1)$ and $y=(y_0,y_1)$ we can calculate

Jacob Abraham, February 6, 2020 11 / 1

- AND: $x.y = (x_0, x_1).(y_0, y_1) = (x_0 + y_0), (x_1.y_1)$
- OR: $x + y = (x_0, x_1) + (y_0, y_1) = (x_0.y_0), (x_1 + y_1)$

Inaccuracy

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Au

We have come from 2^n simulations to one simulation using $\lceil log_2(n) \rceil$ variables so what is the catch?

The STE assertion is (in0 is a) and (in1 is a) \implies (out is a) Without specifying anything about sel in the antecedent it will be kept as an X making out X

Jacob Abraham, February 6, 2020 12 / 1

Jacob Abraham, February 6, 2020 13 / 1

Circuit model

- Set of circuit nodes is N (example, in0, in1, out, the inputs and output of an AND gate)
- A state is an assignment of values from V to circuit nodes, $s: N \rightarrow V$ (example, assignment s(in0) = X, s(in1) = 1, s(out) = X)
- Circuit state is a collection of such values of the circuit nodes $S = \langle \forall n \in N : s(n) \rangle$ (example, $\langle X1X \rangle$)
 - Note that in STE circuit state includes all nodes and not just latch nodes
- Closure function $F: S \times S$ (example, can be derived from the AND function extended to V)

Jacob Abraham, February 6, 2020 16 / 1

Jacob Abraham, February 6, 2020 17 / 1

- Note that the closure function is not the same as the traditional next state function
- F propagates given values to other nodes
- F can be easily constructed from the netlist logic

Trajectory Evaluation Logic (TEL)

STE assertions are of the form $A \implies C$, where A and C are Trajectory Formulas in the language of TEL with the following syntax

Definition	
A,C ::= n is 0	
$\mid n \text{ is } 1$	
A1 and A2	
$ P \rightarrow A$	
$\mid \mathbf{N} A$	

Notes

ECE Department, University of Texas at Austin

ECE Department, University of Texas at a

- P is a predicate over a set of symbolic variables V that are time-independent
- The notion of time is in the form of the next time operator
- We can assign symbolic expressions to node values because (n is P) is short form of (P → n is 1) and (¬P → n is 0)

STE Example: Memory verification

STE Example: Memory verification: time 0 and 1

Jacob Abraham, February 6, 2020 21 / 1

• loc3 = if (a0.a1) then d else X

ECE Department, University of Texas at Austin

Symbolic Trajectory Evaluation at Freescale VERSYS symbolic trajectory evaluation tool developed at Motorola/Freescale Based on VOSS (from CMU/UBC) Trajectory formulas Boolean expressions with the temporal next-time operator Ternary values states represented by a Boolean encoding • Properties of type: Antecedent \implies Consequent • Antecedent, Consequent are trajectory formulas Antecedent sets up stimulus, state of the circuit • Consequent specifies constraint on the state sequence Used to verify PowerPC arrays at Motorola/Freescale in 8 – 10% of the design time Bugs found during array equivalence checking Incorrect clock regenerators feeding latches Control logic errors in READ/WRITE enables • Violation of "one-hot" property assumptions Scan chain hookup errors Potential circuit-related problems such as glitches and races ECE Department, University of Texas at Austin Jacob Abraham, February 6, 2020 23 / 1

Simple Arithmetic Rewriting

- integer, variable, (,), +, *
- (Note: no evaluation rules defined)

Rules

- Rule1: $(op \ a \ b) \rightarrow (op \ b \ a)$ if (b < a) and $op \in \{+, *\}$
- Rule2: $(*(+ a \ b) \ c) \rightarrow (+(* \ a \ c) \ (* \ b \ c))$
- Rule3: $(+ a \ a) \rightarrow (* \ a \ 2)$
- Rule4: $(op (op a b) c) \rightarrow (op (op a c) b)$ if (a < c & c < b) and $op \in \{+, *\}$
- Rule5: $(op \ a \ (op \ b \ c)) \rightarrow (op \ (op \ b \ c) \ a)$ if $(a > c \ \& \ b > c)$ and $op \in \{+, *\}$

o Abraham, February 6, 2020 27 / 1

Source: Shaun Feng

ECE Department, University of Texas at Austin

Example(s) in Rewriting
Example: $(* 4 (+ 3 3) \stackrel{!}{=} (*(+ 4 4) 3)$
• $(*4 (+33) \rightarrow (*4(*32)) \rightarrow (*4 (*23)) \rightarrow (*(*23)4)$
• $(*(+4\ 4)\ 3) \to (*\ (*\ 4\ 2)\ 3) \to (*\ (*\ 2\ 4)\ 3) \to (*(*\ 2\ 3)\ 4)$
Prove if $(* x(+ y y) \doteq (*(+ x x) y)$
CE Department, University of Texas at Austin Rewriting Jacob Abraham, February 6, 2020 28 / 1
Term Rewriting Systems
• 3-tuple: (T, L, R)
• T: Set of terms (functions, constants, variables, operators)
(t_1, t_2, \dots, t_n)
• R: Set of labeled rules (may be conditional) $(r_1, r_2,, r_n)$
Rewrite process
$t_1 \xrightarrow{r_i} t_2 \xrightarrow{r_j} t_3 \xrightarrow{r_k} \dots \xrightarrow{r_m} t_n$ (Normal Form)
• Term that cannot be rewritten any further
• Depending on the system, several normal forms (or no normal
form) may exist Normal forms can be used for verification
Equivalence of two terms
 Determine whether the two terms have the same normal forms

Jacob Abraham, February 6, 2020 29 / 1

ECE Department, University of Texas at Austin

Termination and Cofluence

Termination

• No infinite rewriting sequence \rightarrow normal form exists

Cofluence

ECE Department, University of Texas at Austin

• Terms can be rewritten in multiple ways, but will eventually yield the same results

Jacob Abraham, February 6, 2020 31 / 1

- $(*(+21)(+34)) \rightarrow (*3(+34)) \rightarrow (*37)$
 - (*(+ 2 1) (+ 3 4)) \rightarrow (* (+ 2 1) 7) \rightarrow (* 3 7)
- Normal form is unique if it exists

Convergence: Termination and Cofluence

- Normal form exists and is unique
- Convergent TRS used in equivalence checking

Checking Datapaths Using Arithmetic Expressions

Zhou, 1995 Based on Attribute Syntax Trees Example: -(a * b * c) + b * c

ECE Department, University of Texas at A

ob Abraham, February 6, 2020 32 / 1

Verification of Arithmetic Circuits using Term Rewriting

- RTL to RTL equivalence checking
- Verifies large multiplier designs
- Formalism: Term Rewriting Systems

Verifire

ECE Department, University of Texas at A

- Dedicated Arithmetic Circuit Checker
- Vtrans: Translates Verilog designs to Term Rewriting Systems
- Vprover: Proves equivalence of Term Rewriting Systems
 - Iterative engine which returns error trace if proof not found
 - Maintains an expanding rule base for expression minimization
 - Incomplete, but efficient, engine

S. Vasudevan *et al.* "Automatic Verification of Arithmetic Circuits in RTL using Stepwise Refinement of Term Rewriting Systems," *IEEE Transactions on Computers*, vol. 56, issue 10, pp. 1401-1414, October 2007.

RTL Equivalence Using Term Rewriting Systems (TRS)

b Abraham, February 6, 2020 34 / 1

Modeling Verilog as TRSs

- Verilog modules translated into structural TRS
- Resulting TRS "simulates" Verilog evaluation semantics
- TRS contains symbolic terms for signals in terms of other signals and primary inputs
- Symbolic terms (signal expressions) consist only of RTL operators

Verilog designs

- Every Verilog design corresponds to a TRS
- Every module is a term
- Inputs, Outputs, Reg, Wire, Module instantiations: Subterms
- Variable updating syntactic transformations: Rewrite rules (assignments, case, if-then-else statements)

Equivalence of TRSs

ECE Department, University of Texas at A

ECE Department, University of Texas at Austin

- Observation function applied to both TRSs to obtain observed set of terms
- Comparing entire symbolic values of terms: intractable problem
- Compare at intermediate stages of rewriting: comparison points
- Terms compared and expression equivalence proved at every comparison point
- Last comparison point: Normal form

Heuristic for comparison points: compute a partition of the bits for a particular output defined by the assignments to different subsets of bits of the same signal in both the reference (golden) and target designs

b Abraham, February 6, 2020 37 / 1

Checking Equivalence of Terms (reduce())

ECE Department, University of Texas at a

Check for equivalence between two symbolic terms by rewriting based on simplification

Results on Multipliers

ECE Department, University of Texas at Aus

ECE Department, University of Texas at Austin

Different sizes of Wallace Tree Multipliers (Verilog RTL) compared with a simple Golden Multiplier (Verilog RTL) of the same size

Compare Verifire against Commercial Tools						
Wallace Tree	Verifire	Commercial Tool 1	Commercial Tool 2			
4x4	14s	10s	9s			
8x8	18s	18s	16s			
16×16	25s	unfinished	unfinished			
32x32	40s	unfinished	unfinished			
64×64	60s	unfinished	unfinished			

Distribution of Rewrite Rules for Multipliers Used by reduce()

Rule class	Number	Example
	of rules	
Boolean	32	$(\mathbf{x} \mid (\mathbf{y} \And \mathbf{z})) \rightarrow ((\mathbf{x} \mid \mathbf{y}) \And (\mathbf{x} \mid \mathbf{z}))$
Add/Subtract	44	$(\mathbf{x} + (\mathbf{y} - \mathbf{z})) \rightarrow ((\mathbf{x} + \mathbf{y}) - \mathbf{z})$
Shift	16	((x << 1) << 1) \rightarrow (x << 2)
Multiplier Specific	9	$((x << 1) - x) \rightarrow x$
Total	101	

Jacob Abraham, February 6, 2020 40 / 1

Jacob Abraham, February 6, 2020 41 / 1

Comparison of Verifire Against Commercial Checker

Ν	Iultiplier	Verifire	Commercial	Verifire	Commercial	Verifire	Commercial
		(Booth)	Tool (Booth)	(Wallace)	Tool (Wallace)	(Dadda)	Tool (Dadda)
	$4b \times 4b$	16s	12s	14s	10s	13s	8s
	$8b \times 8b$	19s	20s	18s	20s	17s	17s
1	$6b \times 16b$	24s	1942s	25s	972s	29s	not completed
3	$2b \times 32b$	37s	not completed	40s	not completed	51s	not completed
6	$4b \times 64b$	53s	-	60s	-	83s	-

The commercial equivalence checker was assisted by manual compare points (determined from the automatically extracted compare points in Verifire)

Use of TRS with SMT for Verifying Embedded Software

- Verify that two short code segments compute the same result
- Symbolically simulate modern VLIW

ECE Department, University of Texas at Austi

- Use TRS to simplify symbolic expressions
- Send query to decision procedure for proof
 - Verify equivalence between two code segments
 - Check conditions of rules to simplify memory term/expression

Dealing with Absence of Canonical Forms

- Difficult to reduce two equivalent symbolic expressions to a canonical form
 - If two program segments have different control flows, the expressions will be very different
- Solution: Use a decision procedure with SMT solvers

Applied to TI C62x VLIW DSP (can handle DSP assembly code) Found mismatch in a packet example in TI CPU and ISA reference References: Feng and Hu, EMSOFT 2005, LCTES 2002; Currie, Feng, Fujita, Hu, Kwan and Rajan, IJPP 2006; Currie, Hu, Rajan and Fujita, DAC 2000

ob Abraham, February 6, 2020 42 / 1

