
Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 1

6. Symbolic Trajectory Evaluation, Term Rewriting

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

Verification of Digital Systems
Spring 2020

February 6, 2020

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 1 / 1

Motivation for Symbolic Trajectory Evaluation

Equivalence checking between RTL and circuit schematics is
difficult for some circuits (e.g., custom arrays)

Critical timing and self-timed control logic
Large number of bit-cells
Inherently complex sequential logic blocks
Dynamic logic

Traditional tools fail on such circuits

Very large state space, too many initial state/input sequences
for simulation-based tools
Boolean equivalence tools only check static cones of logic, do
not capture dynamic behavior

Acknowledgements: J. Bhadra, J. Harrison, K. Claessen, J.-W.
Roorda, N. Krishnamurthy, A. K. Martin, H. Anand, J. Yang, F.
Xie

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 1 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 2

Motivation

Control for customer array structure

With zero delay functional simulation OUT is 0

OUT pulse fans out to array READ/WRITE control signals

Need to define unit delay for all gates to get a pulse on OUT

Verification for correctness fails in downstream logic without
this pulse

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 2 / 1

Symbolic Trajectory Evaluation

Symbolic Trajectory Evaluation (STE) is a high-performance
simulation-based model checking technique, originally
invented by Seger and Bryant

STE uses a combination of three-valued simulation and
symbolic simulation

Example to illustrate STE

The specification says that out represents the output of a
3-input AND gate with in0, in1, and in2 as inputs

An implementation of the above spec

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 3 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 3

Scalar Simulation

We need 2n (8 here) simulation patterns

One such pattern is the assertion

(in0 is 0) and (in1 is 1) and (in2 is 0) =⇒ (out is 0)
Every check like this is of the form A =⇒ C, where A is an
antecedent and C is a consequent
All STE assertions are of this form – we will give formal
definition of STE assertions and define their semantics

Not practical for large scale designs and so we need to make it
more efficient, but how?

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 4 / 1

Three-valued Simulation

Observation
Any input having assigned to 0, makes the output 0
Other inputs do not matter meaning could be 0 or 1 (X)

If we introduce a new value (X = don’t care) in the simulation
we need to evaluate the outputs of standard gates

x ¬x
0 1

1 0

X X

x y x.y

0 0 0

0 1 0

1 0 0

1 1 1

X 0 0

0 X 0

X 1 X

1 X X

X X X

x y x+ y

0 0 0

0 1 1

1 0 1

1 1 1

X 0 X

0 X X

X 1 1

1 X 1

X X X

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 5 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 4

Three-valued Simulation

Cannot afford 2n simulation patterns and so we will use
3-valued simulations

Simulation pattern becomes

(in0 is 0) and (in1 is X) and (in2 is X) =⇒ (out is 0)
This can be simplified into (in0 is 0) =⇒ (out is 0)
Still of the form A =⇒ C

Now the total number of simulations needed has reduced to
n+ 1 (4 here)

(in1 is 0) =⇒ (out is 0)
(in2 is 0) =⇒ (out is 0)
(in0 is 1) and (in1 is 1) and (in2 is 1) =⇒ (out is 1)

Can we do better?

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 6 / 1

Symbolic Simulation

Assign symbols on inputs

Now we need to do only one simulation

(in0 is a) and (in1 is b) and (in2 is c) =⇒ (out is a.b.c )

Can we do better than 1 simulation?

No, but...

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 7 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 5

Checking for correctness

Boolean expressions can be represented as BDDs (or other
data structures) for performing constant time checks
Verification steps to check the following assertion

(in0 is a) and (in1 is b) and (in2 is c) =⇒ (out is a.b.c )
Implementation: From the antecedent assign symbols
(equivalent to BDDs) to the inputs of the circuit
Calculate the symbolic expressions (as BDDs) in the circuit
nodes until the symbolic value of the output is known
Specification: Calculate the consequent expression BDD
Compare the two BDDs for equivalence

Can we reduce the complexity of this one simulation?
ECE Department, University of Texas at Austin

Lecture 6. Symbolic Trajectory Evaluation, Term
Rewriting Jacob Abraham, February 6, 2020 8 / 1

Three-valued symbolic simulation

In STE we combine the efficiency of three-valued simulation
with the preciseness of symbolic simulations

Use this combination by expressing the four 3-valued
simulation runs as only one 3-valued symbolic simulation run

Each assignment of 0 and 1 to two variables represents one
3-valued simulation run and since there are 4 possible
assignments, and 4 3-valued simulation runs we can achieve
this reduction (symbolic encoding)

Symbolically,
((¬p.¬q)→ in0 is 0) and
((¬p.q)→ in1 is 0) and
((p.¬q)→ in2 is 0) and
((p.q)→ (in0 is 1) and (in1 is 1) and (in2 is 1))
=⇒ (out is (p.q))

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 9 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 6

Three-valued symbolic simulation

Assertion has the symbolic form P → A =⇒ C where P is a
Boolean expression (predicate)

Logically, this is an implication

Simulation-wise this assertion is going to assign values of
nodes from A in situations where P is true otherwise, the
nodes are kept at Xs

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 10 / 1

Dual-rail encoding

The value of a 3-valued variable x can be represented by 2
Boolean variables x = (x0, x1)

x (x0, x1)

0 (1,0)

1 (0,1)

X (0,0)

Operators can be defined as follows

NEG: ¬x = ¬(x0, x1) = (x1, x0)

For 2 3-valued variables x = (x0, x1) and y = (y0, y1) we can
calculate

AND: x.y = (x0, x1).(y0, y1) = (x0 + y0), (x1.y1)
OR: x+ y = (x0, x1) + (y0, y1) = (x0.y0), (x1 + y1)

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 11 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 7

Dual-rail encoding for circuit inputs

So, this expression implies a few values for in0, in1, in2
((¬p.¬q)→ in0 is 0) and
((¬p.q)→ in1 is 0) and
((p.¬q)→ in2 is 0) and
((p.q)→ (in0 is 1) and (in1 is 1) and (in2 is 1))
=⇒ (out is (p.q))

if (¬p.¬q) then assign in0 to 0
else (if (p.q) then assign in0 1 else keep in0 at an X)

similar for in1 and in2

Since in0 is a 3-valued variable its dual-rail encoding will be
in0 = ((¬p.¬q), (p.q))
So, now the verification can be done by one simulation run
with dlog2(n)e (2 here) number of variables

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 12 / 1

Inaccuracy

We have come from 2n simulations to one simulation using
dlog2(n)e variables so what is the catch?

The STE assertion is
(in0 is a) and (in1 is a) =⇒ (out is a)
Without specifying anything about sel in the antecedent it will be
kept as an X making out X

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 13 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 8

Inaccuracy can be reduced by variables

The STE assertion that will resolve the issue is
(sel is b) and
(in0 is a) and (in1 is a) =⇒ (out is a)
Bottom line: there is a reduction in number of variables but under
some circumstances one will need more variables for accuracy

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 14 / 1

STE Theory: information ordering

X is “unknown (under-constrained) value of 0 or 1”

T is “conflicting (over-constrained) value 0 and 1”

The information ordering forms a lattice that can extend to n
variables (X � 0, X � 1, 0 � > and 1 � >)

Simulators need to use values V = {0, 1, X, T}
Simulators use ¬> = >, x.> = >, >.x = >, x+> = > and
>+ x = >
Logic gates are monotonic w.r.t. information ordering

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 15 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 9

Circuit model

Set of circuit nodes is N (example, in0, in1, out, the inputs
and output of an AND gate)

A state is an assignment of values from V to circuit nodes,
s : N → V (example, assignment s(in0) = X, s(in1) = 1,
s(out) = X)

Circuit state is a collection of such values of the circuit nodes
S = 〈∀n ∈ N : s(n)〉 (example, 〈 X1X 〉)

Note that in STE circuit state includes all nodes and not just
latch nodes

Closure function F : S × S (example, can be derived from the
AND function extended to V )

Note that the closure function is not the same as the
traditional next state function
F propagates given values to other nodes
F can be easily constructed from the netlist logic

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 16 / 1

Trajectory Evaluation Logic (TEL)

STE assertions are of the form A =⇒ C, where A and C are
Trajectory Formulas in the language of TEL with the following
syntax

Definition

A,C ::= n is 0
| n is 1
| A1 and A2
| P → A
| N A

Notes

P is a predicate over a set of symbolic variables V that are
time-independent

The notion of time is in the form of the next time operator

We can assign symbolic expressions to node values because (n
is P ) is short form of (P → n is 1) and (¬P → n is 0)

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 17 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 10

A Simplification and the Fundamental Theorem of STE

The simulator performs one simulator run

The simulator cannot check if C holds for all trajectories

It calculates the weakest trajectory σ in which A is satisfied
and checks if C holds on that particular trajectory

By previous observation C is going to hold on all trajectories
that are stronger than σ

This implies that it is enough to check C only for the
weakest trajectory satisfying A instead of all trajectories

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 18 / 1

STE Example: Memory verification

Memory with address width k and data width n needs n.2k

state holding elements (state based model checkers)

STE would need n+ k variables: let us see how

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 19 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 11

STE Example: Memory verification

Assertion for a memory
(wr is 1) and (addr[0] is a0) and (addr[1] is a1) and (in is d)
and N ((rd is 1) and (addr[0] is a0) and (addr[1] is a1))
=⇒ N (out is d)

Observations

Symbolic variables are a0, a1, d (total number is n+ k)

Assertion starts from all Xs, writes into symbolic location
a0a1 with symbolic data d and then reads from the same
symbolic location expecting to read out the symbolic data d

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 20 / 1

STE Example: Memory verification: time 0 and 1

Time 0: before the simulation begins all locations are Xs

Time 1: once written the symbolic values in the memory locations
are

loc0 // (“if I am addressed then I become d else I keep at X”)
= if (¬a0.¬a1 == true) then new loc0 value is d else X
= if (¬a0.¬a1) then d else X

loc1 = if (¬a0.a1) then d else X

loc2 = if (a0.¬a1) then d else X

loc3 = if (a0.a1) then d else X
ECE Department, University of Texas at Austin

Lecture 6. Symbolic Trajectory Evaluation, Term
Rewriting Jacob Abraham, February 6, 2020 21 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 12

STE Example: Memory verification: time 2

Time 2: outputs are assigned depending on which location is read

out0 // (“if I am addressed then value of loc0 else 0”)
= if (¬a0.¬a1) then loc0 else 0
= if (¬a0.¬a1) then (if(¬a0.¬a1) then d else X) else 0
= if (¬a0.¬a1) then d else 0

Similarly, out1 = if (¬a0.a1) then d else 0

out2 = if (a0.¬a1) then d else 0

out3 = if (a0.a1) then d else 0

Simplifying, out = out0 OR out1 OR out2 OR out3 = d
ECE Department, University of Texas at Austin

Lecture 6. Symbolic Trajectory Evaluation, Term
Rewriting Jacob Abraham, February 6, 2020 22 / 1

Symbolic Trajectory Evaluation at Freescale

VERSYS symbolic trajectory evaluation tool developed at
Motorola/Freescale

Based on VOSS (from CMU/UBC)

Trajectory formulas
Boolean expressions with the temporal next-time operator
Ternary values states represented by a Boolean encoding

Properties of type: Antecedent =⇒ Consequent
Antecedent, Consequent are trajectory formulas
Antecedent sets up stimulus, state of the circuit
Consequent specifies constraint on the state sequence

Used to verify PowerPC arrays at Motorola/Freescale in 8 –
10% of the design time
Bugs found during array equivalence checking

Incorrect clock regenerators feeding latches
Control logic errors in READ/WRITE enables
Violation of “one-hot” property assumptions
Scan chain hookup errors
Potential circuit-related problems such as glitches and races

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 23 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 13

Other issues with STE

LTL with finite number of next time N operators

No notion of initial states

No concept of reachable states

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 24 / 1

Term Rewriting Systems

How a term can be rewritten/transformed into another

Term rewriting for equivalence checking

SMT solvers and application to verification and test

Using term rewriting systems to design and verify processors

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 25 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 14

Term Rewriting Systems – Greatest Common Divisor

Euclid’s Algorithm

Terms are functions of integers

Four rules

Rules:

Rule R1: Gcd(a, b) if b 6=0 =⇒ Gcd(b, Rem(a, b))
Rule R2: Gcd(a, 0) =⇒ a
Rule R3: Rem(a, b) if a < b =⇒ a
Rule R4: Rem(a, b) if a ≥ b =⇒ Rem(a-b, b)

Example:

Gcd(2,4)
R1=⇒ Gcd(4, Rem(2,4))

R3=⇒ Gcd(4,2)
R1=⇒ Gcd(2, Rem(4,2))

R4=⇒ Gcd(2, Rem(2,2))
R4=⇒ Gcd(2, Rem(0,2))

R3=⇒ Gcd(2,0)
R1=⇒ 2

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 26 / 1

Simple Arithmetic Rewriting

Terms

integer, variable, (, ), +, *

(Note: no evaluation rules defined)

Rules

Rule1: (op a b)→ (op b a) if (b < a) and op ∈ {+, ∗}
Rule2: (∗(+ a b) c)→ (+(∗ a c) (∗ b c))
Rule3: (+ a a)→ (∗ a 2)

Rule4: (op (op a b) c)→ (op (op a c) b) if (a < c & c <
b) and op ∈ {+, ∗}
Rule5: (op a (op b c))→ (op (op b c) a) if (a > c & b >
c) and op ∈ {+, ∗}

Source: Shaun Feng

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 27 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 15

Example(s) in Rewriting

Example: (∗ 4 (+ 3 3)
?
= (∗(+ 4 4) 3)

(∗ 4 (+ 3 3)→ (∗4(∗ 3 2))→ (∗ 4 (∗ 2 3))→ (∗(∗ 2 3) 4)

(∗(+ 4 4) 3)→ (∗ (∗ 4 2) 3)→ (∗ (∗ 2 4) 3)→ (∗(∗ 2 3) 4)

Prove if (∗ x(+ y y)
?
= (∗(+ x x) y)

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 28 / 1

Term Rewriting Systems

3-tuple: (T, L, R)

T: Set of terms (functions, constants, variables, operators)
(t1, t2, . . . , tn)
L: Set of labels (R1, R2, . . . )
R: Set of labeled rules (may be conditional) (r1, r2, . . . , rn)

Rewrite process

t1
ri→ t2

rj→ t3
rk→ . . .

rm→ tn (Normal Form)

Term that cannot be rewritten any further
Depending on the system, several normal forms (or no normal
form) may exist
Normal forms can be used for verification

Equivalence of two terms

Determine whether the two terms have the same normal forms

Undecidable in general

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 29 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 16

Rewriting 3NAND using 2NAND
Terms

2NAND(), A,B,C, a, b,∧,¬

Rules

Rule R1: a ∧ b→ ¬2NAND(a, b)

Rule R2: ¬(¬a)→ a

Rule R3: ¬a→ 2NAND(a, a)

Apply the rules to get a 3NAND

¬((A ∧B) ∧ C) R1−−→ ¬(¬2NAND(A ∧B,C)) R2−−→
2NAND(A ∧B,C) R1−−→ 2NAND(¬2NAND(A,B), C)

R3−−→
2NAND(2NAND(2NAND(A,B), 2NAND(A,B)), C)

Source: Shaun Feng
ECE Department, University of Texas at Austin

Lecture 6. Symbolic Trajectory Evaluation, Term
Rewriting Jacob Abraham, February 6, 2020 30 / 1

Termination and Cofluence

Termination

No infinite rewriting sequence → normal form exists

Cofluence

Terms can be rewritten in multiple ways, but will eventually
yield the same results

(*(+ 2 1) (+ 3 4)) → (* 3 (+ 3 4)) → (* 3 7)
(*(+ 2 1) (+ 3 4)) → (* (+ 2 1) 7) → (* 3 7)

Normal form is unique if it exists

Convergence: Termination and Cofluence

Normal form exists and is unique

Convergent TRS used in equivalence checking

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 31 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 17

Rules of TRS Deduction

(I) Reflexivity: t→ t

(R) Replacement:

R1: a → a - 3 if a ∈ I and a ≥ 3

tk(x)→ tn(x)

tk(x0/x)→ tn(x0/x)

(C) Congruence

R1: a→ a - 3 if a ≥ 3

t1 → t′1, . . . , tk → t′m
f(t1, . . . , tk)→ f(t′1, . . . , t

′
k)

(T) Transitivity

t1 → t2, . . . , t2 → t3
t1 → t3

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 32 / 1

Checking Datapaths Using Arithmetic Expressions

Zhou, 1995
Based on Attribute Syntax Trees
Example: – (a * b * c) + b * c

(a) non-canonical form, and (b) canonical form under the
lexicographic path ordering
Source: Zhou and Burleson, DAC 1995

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 33 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 18

Verification of Arithmetic Circuits using Term Rewriting

RTL to RTL equivalence checking

Verifies large multiplier designs

Formalism: Term Rewriting Systems

Verifire

Dedicated Arithmetic Circuit Checker

Vtrans: Translates Verilog designs to Term Rewriting Systems

Vprover: Proves equivalence of Term Rewriting Systems

Iterative engine which returns error trace if proof not found
Maintains an expanding rule base for expression minimization
Incomplete, but efficient, engine

S. Vasudevan et al. “Automatic Verification of Arithmetic Circuits in RTL

using Stepwise Refinement of Term Rewriting Systems,” IEEE Transactions on

Computers, vol. 56, issue 10, pp. 1401-1414, October 2007.

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 34 / 1

RTL Equivalence Using Term Rewriting Systems (TRS)

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 35 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 19

Modeling Verilog as TRSs

Verilog modules translated into structural TRS

Resulting TRS “simulates” Verilog evaluation semantics

TRS contains symbolic terms for signals in terms of other
signals and primary inputs

Symbolic terms (signal expressions) consist only of RTL
operators

Verilog designs

Every Verilog design corresponds to a TRS

Every module is a term

Inputs, Outputs, Reg, Wire, Module instantiations: Subterms

Variable updating syntactic transformations: Rewrite rules
(assignments, case, if-then-else statements)

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 36 / 1

Equivalence of TRSs

Observation function applied to both TRSs to obtain observed
set of terms

Comparing entire symbolic values of terms: intractable
problem

Compare at intermediate stages of rewriting: comparison
points

Terms compared and expression equivalence proved at every
comparison point

Last comparison point: Normal form

Heuristic for comparison points: compute a partition of the bits for
a particular output defined by the assignments to different subsets
of bits of the same signal in both the reference (golden) and target
designs

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 37 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 20

Checking Equivalence of Terms (reduce())

Check for equivalence between two symbolic terms by rewriting
based on simplification

(x & x) → x

((x & y)&z) → (x & (y & z))

(x << 3) → (x << 2) + (x << 1) + (x << 1)

((x << 1)− x) → x

((x << 1) << 1) → (x << 2)

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 38 / 1

Equivalence of TRSs Applied to Arithmetic Circuits

Observed Variables: Outputs

Comparison points: Points where expressions for partial
number of bits is obtained

Bitwise equivalence of observed terms

Normal form: Entire bitwidth compared

Example: checking ripple-carry adder against carry lookahead adder

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 39 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 21

Results on Multipliers

Different sizes of Wallace Tree Multipliers (Verilog RTL) compared
with a simple Golden Multiplier (Verilog RTL) of the same size

Compare Verifire against Commercial Tools

Wallace Tree Verifire Commercial Tool 1 Commercial Tool 2

4x4 14s 10s 9s

8x8 18s 18s 16s

16x16 25s unfinished unfinished

32x32 40s unfinished unfinished

64x64 60s unfinished unfinished

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 40 / 1

Distribution of Rewrite Rules for Multipliers Used by
reduce()

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 41 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 22

Comparison of Verifire Against Commercial Checker

The commercial equivalence checker was assisted by manual
compare points (determined from the automatically extracted
compare points in Verifire)

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 42 / 1

Use of TRS with SMT for Verifying Embedded Software

Verify that two short code segments compute the same result
Symbolically simulate modern VLIW
Use TRS to simplify symbolic expressions
Send query to decision procedure for proof

Verify equivalence between two code segments
Check conditions of rules to simplify memory term/expression

Dealing with Absence of Canonical Forms

Difficult to reduce two equivalent symbolic expressions to a
canonical form

If two program segments have different control flows, the
expressions will be very different

Solution: Use a decision procedure with SMT solvers

Applied to TI C62x VLIW DSP (can handle DSP assembly code)
Found mismatch in a packet example in TI CPU and ISA reference
References: Feng and Hu, EMSOFT 2005, LCTES 2002; Currie, Feng, Fujita,

Hu, Kwan and Rajan, IJPP 2006; Currie, Hu, Rajan and Fujita, DAC 2000
ECE Department, University of Texas at Austin

Lecture 6. Symbolic Trajectory Evaluation, Term
Rewriting Jacob Abraham, February 6, 2020 43 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 23

Flow of the Technique

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 44 / 1

Boolean Satisfiability (SAT)

Is there an assignment to the p1, p2, . . . , pn variables such that φ
evaluates to 1?

Source: Barrett and Seshia, ICCAD tutorial, 1999

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 45 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 24

Satisfiability Modulo Theories

Is there an assignment to the x, y, z, w variables such that φ
evaluates to 1?

Source: Barrett and Seshia, ICCAD tutorial, 1999

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 46 / 1

SMT Tools and Constraints

Many Tools

MathSAT

MiniSmt

Boolector

SMT-RAT

Yices

Quantifier-Free Subset of Logic

Generally deal with formulas of first-order logic without
quantifiers (∀, ∃)

Theory of Equality and Uninterpreted Functions (EUF)

Only property required is Congruence

x = y =⇒ f(x) = f(y)

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 47 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020



Verification of Digital Systems, Spring 2020
6. Symbolic Trajectory Evaluation, Term Rewriting 25

Data and Function Abstraction with EUF

Source: Barrett and Seshia, ICCAD tutorial, 1999

ECE Department, University of Texas at Austin
Lecture 6. Symbolic Trajectory Evaluation, Term

Rewriting Jacob Abraham, February 6, 2020 48 / 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, February 6, 2020


