
1/30/2020

1

ML/AI in HW Verification
Dr. Monica Farkash

EE 382M-11, Verification of Digital Systems, Spring 2020
Department of Electrical and Computer Engineering

The University of Texas at Austin

Phase 1 – Learn
- What’s going on
- What control changes would be

pertinent and available to achieve
something useful

PROCESSINPUT OUTPUT

MLML

Phase 2 – Use (Verification Flow Integration)
- Based on what you learned write a piece
of SW that implements the decisions in real
life (production)

. Use ML/AI to IMPROVE VERIFICATION

1

2

1/30/2020

2

ML/AI in HW Verification

EE 382M-11, Verification of Digital Systems, Spring 2020
Department of Electrical and Computer Engineering

The University of Texas at Austin

CONTENTS
1. Practical ML info
2. An Example
3. General View
4. More Examples

https://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html#ml-map

3

4

1/30/2020

3

Clustering

- “Group” the records according to how
“similar” the are

- Unsupervised (no labels)

- “Guess” number of clusters (groups)

Supervised learning : You “learn” from labeled examples

Classification :
The problem of “guessing” to which class it belongs,
based on features and past processed examples

Example:
After failing tests are manually labeled as the bug that triggered the failure
Use classification to learn what differentiates tests that fail due to Bug A from all the other failing tests
Here Classification is used not for future identification but for feature ID.

Classification

F1

F2

F3

F4

5

6

1/30/2020

4

Regression
- Find a function that explains the examples

(values)

- use it to predict

Example:

- Guess time needed for coverage

Dimensionality
Reduction

- Variables = dimensions (2D, 3D, nD spaces)

- Reduce # variables
Linear Discriminative Component

PCA decompose a multivariate dataset in a
set of successive orthogonal components
that explain a maximum amount of the
variance.

Principal Component Analysis

LDA tries to identify attributes that account for
the most variance between classes.

https://www.cs.waikato.ac.nz/ml/weka/

7

8

1/30/2020

5

Neural Network

“Black Magic Box”
• Input vector X
• Output vector Y
• guess nonlinear function

Learning:
• Provide (X,Y) and have the box

learn internal variables such that
for a given X it has as output the
respective Y

Use:
• Provide new X and read the Y

X

Keras: https://keras.io/

ML/AI in HW Verification

EE 382M-11, Verification of Digital Systems, Spring 2020
Department of Electrical and Computer Engineering

The University of Texas at Austin

CONTENTS
1. Practical ML info
2. An Example
3. General View
4. More Examples

9

10

1/30/2020

6

Passing tests

Triage

Failing tests Reveal
? The number of bugs
? Which tests fail due to the same bug

=> NO REDUNDANT EFFORT !
=> How much effort needed ? (#bugs)
=> Which test to debug first :

• As in impactful bug
• As in short test for that bug

=> Hints per bug ?
=> Who should debug what ? (skills)

Why ?

Triage: Potential Data
Input data:

• Test contents (if available)
• Test template (scenario)

Observations:
• Assertions /cover points
• Events (log files)

Controls: (testbenches?)
• Warm load, Config modes

Output:
• Pass/Fail
• Coverage (toggle/line/fct.)

DATA

Useful DATA

Useless DATA

1. Identify relevant data

11

12

1/30/2020

7

Example
Simulation ID #
Which HW Model was used

Cycle #when it failed
Core that failed
Thread that failed
Error signature

Mismatch Register Name
Register mismatch field name
Mismatch # bytes
Data Mismatch addr in memory
Data Mismatch – the data found
Data Mismatch – the data expected

Last instruction executed
Last instruction mode
Last instruction exception
Last instruction expected event
(only if exception)

Test Generator (Suite) used
Test Name
Test Template name (scenario)

Data Processing:
Exclude & Change

Simulation ID #
Which HW Model was used

Cycle #when it failed
Core that failed
Thread that failed
Error signature
Mismatch Register Name
Register mismatch field name
Mismatch # bytes
Data Mismatch addr in memory
Data Mismatch – the data found
Data Mismatch – the data expected

Last instruction executed
Last instruction mode
Last instruction exception
Last instruction expected event
(only if exception)

Test Generator (Suite) used
Test Name
Test Template name (scenario)

X < th1; th1 < x < th2; x > th2

R1 R2 R3 R4 R5 R6
1 0 0 1 1 0

(more than one register mismatch)

AD: OP: MOV [EAX],0x000C0045 MOVE

Exception ID – hierarchical info

Mode before / Mode after (same or different) . ex. PmSVG64 , Cm32, ...

13

14

1/30/2020

8

Similarity

Group them according to how similar they are.
Simple idea: use distance function = # features same values
T1, T2 : F1, F3, F4

T1, T3: F2, F3

T2, T3: F3, F6, “F7” (binning)

test F1 F2 F3 F4 F5 F6 F7
T1 A X R P W L 9184610
T2 A Y R P U 0 14
T3 b X R T V 0 102

F1 F2 F3 F4 F5 F6 F7
T1 A X R P W L 9184610
T2 A Y R P U 0 14
T3 b X R T V 0 102

F1 F2 F3 F4 F5 F6 F7
T1 A X R P W L 9184610
T2 A Y R P U 0 14
T3 b X R T V 0 102

F1 F2 F3 F4 F5 F6 F7
T1 A X R P W L 9184610
T2 A Y R P U 0 14
T3 b X R T V 0 102

Why Data Pre-processing

test F1 F2 F3 F4 F5 F6 F7
T1 A X R P W L 9184610
T2 A Y R P U 0 14
T3 b X R T V 0 102

Grouping according to similarity, data can help, harm or be just useless.

Useless:

 F3: all tests have same value. F3 doesn’t help and it doesn’t hurt. It simply doesn’t provide information (and clogs the system).
 F5: each test has a different value. F5 doesn’t help and doesn’t hurt. It simply doesn’t provide information.

Help:

 F1: T1 and T2 “score” a similarity. T3 is not similar to T1, nor T2
 F2: T2 and T3 “score” a similarity. T2 doesn’t.
 F4: Again, T1 and T2 “score” a similarity.
 {T1, T2} score more similar features than {T1, T3} or {T2,T3} therefore (!) it is more likely for T1 and T2 to fail due to the same bug

Harm:

 F6: the lack of information (NaN) is perceived as ‘0’ here and it counts as if T2 and T3 ‘score’ a similarity.

 F7: randomly generated data is generally binned and because T2 and T3 have small values, they will end up in the same “bin” and here is
another wrongly perceived similarity between T2 and T3. (random is not uniformly distributed, and even if, binning would still create
information from where there’s none)

The two harmful => misinformation => {T2, T3} seem closer to each other (wrong!)

15

16

1/30/2020

9

One Question at a Time: Model Creation

DATA

Useful DATA

Useless DATA

Manual
Triage

1. Identify relevant data 2. Create Model

Clustering

17

18

1/30/2020

10

One Question at a Time: Model

DATA

Useful DATA

Useless DATA

Manual
Triage

Compare

1. Identify relevant data 2. Create Model 3. Compare to desired

Compare Criteria Definition

1. Number groups = number real distinct bugs
Allows for planning => SHIFT LEFT
Ideal # Groups = # Real Bugs

2. One group/engineer debugs one test/group => distinct bugs
Cost of Redundancy
more people – higher danger or redundancy

3. Identifying all bugs that are main hitters (lots of failures)
Cost of resources, time ...=> SHIFT LEFT
Less groups – higher danger of missing a big hitter

19

20

1/30/2020

11

A

bug groups 1
3

distinct bugs 9
missed important
bugs 2

REDUNDANCY

COST ++ ! Due to running
many failing tests again

Real bugs =42

important bug

important bugs

Data - Explain !

DATA

Useful DATA

Useless DATA

Manual
Triage

Compare

WHY wasn’t the model able to correctly identify bug A ?
WHAT features distinguish bug A from all the other bugs ?

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision

21

22

1/30/2020

12

Data - Explain !

Explain

WHY wasn’t the model able to correctly identify bug A ?
WHAT features distinguish bug A from all the other bugs ?

F1

F2

F3

F4

1 2 3 4 5 6 7 8 9 10 …

2 3 4 5 6 7 8 9 10 …

1 3 4 5 6 7 8 9 10 …

1 2 4 5 6 7 8 9 10 …

1

2

3

Data - Explain !

Explain

WHY wasn’t the model able to correctly identify bug A ?
WHAT features distinguish bug A from all the other bugs ?

23

24

1/30/2020

13

Data - Explain !

Useful DATA

Useless DATA

Currently
Recorded DATA

NEEDED
DATA

F1

F2

F
3

F4

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision5. Add relevant data

Flow Implementation

ONLY Useful DATA

Flow:
- Integrated solution
- Automatic everything that’s possible
- Triggered by events, time, ..
- Graphical view of what’s going on
- Records history (quality)

Finally you provided a solution that can be used

25

26

1/30/2020

14

Use

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision5. Add relevant data

Learn

Implement
Flow

Use

Not Working – Now What ?

1. Model : Use something else, not Clustering

2. Data : Work with them to get more relevant data

3. Goal : Change the “Question” to something attainable and
still useful

27

28

1/30/2020

15

3. Goal
Change it to something attainable
1. Triage by initial definition

• Divide the failed tests into groups such that each group of tests failed due to
the same unique bug.

2. Min Overlap
• Divide the failing tests into as many groups as available verification engineers,

with the condition that the likelihood of two of them debugging the same bug
is minimized.

3. RTL vs. non-RTL
• Learn from the past what combination of features points to RTL respectively

non-RTL bugs and use it in the next iteration. Update rules every time you get
a new batch.

2.Data
Improve its quality
Work on getting more relevant data

Explain to user
Use other means to show which data is relevant and why
Example: Decision tree to explain clustering

29

30

1/30/2020

16

1. Model
Use something else
Clustering -> Rules Learning
• Try to learn the combination of features that explain type of bugs
• Unsupervised (Clustering) -> Supervised
• Reduced the Goal to ID RTL from non-RTL failures

Karnaugh map

Expediting Design Bug Discovery in Regressions of x86 processors Using Machine Learning” Ahmed
Wahba, Justin Hohnerlein, Farhan Rahman Advanced Micro Devices, Inc. (AMD)

ML/AI in HW Verification

EE 382M-11, Verification of Digital Systems, Spring 2020
Department of Electrical and Computer Engineering

The University of Texas at Austin

CONTENTS
1. Practical ML info
2. An Example
3. General View
4. More Examples

31

32

1/30/2020

17

Functional verification • Which (existing) tests to run to achieve coverage faster

• What type of test to create to verify (given/all) area

• Which tests failed due to the same bug

• How many distinct bugs are in there

• What characteristics do the tests failing (presumably same bug) have

• How is the behavior of one failing test different than the behavior of similar
passing tests

• Which benchmark to run (as in keep/replace/remove)

• What configuration (as in modes) is optimal for performance

• How close am I to finish ? (coverage curve)

• Who inserted the bug, in which version of which file

• Which files should be rewritten

• What resource (processing power + memory) is needed by this run (simulation
– run attributes)

• Which engine / heuristics is best (as in formal)

Debugging

Performance

Management

Resources

What types of problems we can solve

Virtual Formal simulation emulation FPGA silicon

Performance

Power

Functional

Security

Testing

Software

https://www.electronicdesign.com/technologies/eda/article/21801171/11-myths-about-hardware-emulation

Reuse / Learn & use ?

No even attempting to make it complete /accurate

33

34

1/30/2020

18

ML Process

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision5. Add relevant data

Learn

Implement
Flow

Use

ML Process

DATA

Useful DATA

Useless DATA

Data Driven / Resources / Management / Debug / Perf.

1. Identify relevant data

5. Add relevant data

First Data:
- What exists (gather/understand available)
- What makes sense (ex. remove transaction random data)
- How it makes sense (pre-process)

Next STEP regarding Data:
- What is relevant

- Correlation
- Reduce dimension (will talk later about

this)
- Get more relevant data instead !

1. Identify relevant data

35

36

1/30/2020

19

ML Process

DATA

Useful DATA

Useless DATA

Data Driven / Resources / Management / Debug / Perf.

Compare

1. Identify relevant data 2. Create Model 3. Compare to desired

2. Create Model

3. Compare to desired

Triage
Debug
Performance Config

2. Create Model 3. Compare to desired

ML Process

DATA

Useful DATA

Useless DATA

Data Driven / Resources / Management / Debug / Perf.

Compare

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision

2. Create Model

3. Compare to desired

4. Explain decision

Triage
Debug
Performance Config

4. Explain decision

37

38

1/30/2020

20

ML Process

DATA

Useful DATA

Useless DATA

Data Driven / Resources / Management / Debug / Perf.

Compare

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision

2. Create Model

3. Compare to desired

4. Explain decision

5. Add relevant data

5. Add relevant data

5. Add relevant data

ML Process

Data Driven / Resources / Management / Debug / Perf.

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision5. Add relevant data

Useful DATA

Learn

Implement
Flow

Triage
Debug
Performance Config

Flow:
- Integrated solution
- Automatic everything that’s possible
- Triggered by events, time, ..
- Graphical view of what’s going on
- Records history (quality)

We leave behind a FLOW !
- Not a model
- Not an analysis
- Not a tool

39

40

1/30/2020

21

Useful DATA

• Remove useless records
• Supervise

• is quality still OK ?
• Change with HW project
• Reuse on similar projects

Virtual e.g. RL on Perf

Learn

Implement
Flow

Use

Common Mistakes
• Data:

• Not pondering on data and deciding if useful or not !
• Accept whatever data they give you as given instead of working with them to get the data that would

be relevant !
• Goal:

• Not challenging and changing (adapting) the goal if/when needed
• Model:

• Not explaining the model (as in which features, why …)
• Choosing uselessly complex solutions ! Consider ROI !
• Believing that the task stops with proving the model

• Flow:
• Not designing a full solution (as in where the data is stored, what triggers the activity, directory

structure, resources, processing power, parallel runs …)
• Not providing visuals over the process (graphics, web pages, …) – high impact, useful, appreciated
• Not implementing quality measurements & keeping records on usage

41

42

1/30/2020

22

ML/AI in HW Verification

EE 382M-11, Verification of Digital Systems, Spring 2020
Department of Electrical and Computer Engineering

The University of Texas at Austin

CONTENTS
1. Practical ML info
2. An Example
3. General View
4. More Examples

Debug

Data: Paths

Data: Coverage

43

44

1/30/2020

23

HW Debug

• Type of data that is being used:
• Functional coverage
• Configuration (modes) coverage
• Graph coverage (scenario/events coverage)

• Main idea to extract debug hints:
• set of failing tests compare to (what we learned from) set of passing tests
• one failing test compare to (what we learned from) set of passing
• one failing test compared to one passing that is most similar

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision5. Add relevant data

1. Identify relevant data

2. Create Model

2. Create Model

Functional Coverage

Data:
- Functional Coverage of Passing & Failing tests

Model:
- Identify what is prevalent in Failing compared to Passing
- Assume passing tests distribution as ‘normal’

Example:
Feature Fk

10% of all passing tests hit assertion Fk
80% failing tests hit this assertion

=> might have something to do with this assertion !

Q: Why not expect 100% of failing test to have that assertion on ?

45

46

1/30/2020

24

Register Configurations (Modes)

Data:
- Configuration (Modes) of passing & failing tests

Model:
- Identify what is prevalent in Failing compared to Passing
- Assume passing tests distribution as ‘normal’

Example: identify all the register configurations Ck that seem to be
correlated with the failing tests

Feature Ck
10% of all passing tests have configuration Ck
80% failing tests have configuration Ck

=> might have something to do with this configuration !

Event(s) compare

Data: (source can be log files)
• Learned (expected) behavior on a bus (signal patterns / beh rules)
• This particular test’s behavior compare to expected

Model:
• Identify the difference between this behavior and the expected
• The moment behaviors diverge

Example:
• All previously passing tests show a delay of at least 5 cycles, and this one, at point

“x” has a delay of 4
• I try to rerun the same on a new model, and the behavior changes in a given point

• Everybody who calls this SW library (API) first calls fct create() then set() then … and this entity called
set() before create()

47

48

1/30/2020

25

Graph coverage
Test Case Generation

Data:
-Events (graph) coverage of passing &
Failing tests (test generation model)

Model:
-Identify what is prevalent in Failing
compared to Passing
-Assume passing tests distribution as
‘normal’

Example:
Path in the graph used to generate the test

Breker Systems https://brekersystems.com/inside-portable-stimulus-concurrency-and-schedules/

Supervised learning : You “learn” from labeled examples

Classification :
The problem of “guessing” to which class it belongs,
based on features and past processed examples

Example:
After failing tests are manually labeled as the bug that triggered the failure
Use classification to learn what differentiates tests that fail due to Bug A from all the other failing tests
Here Classification is used not for future identification but for feature ID.

Classification

F1

F2

F3

F4

1. Identify relevant data 2. Create Model 3. Compare to desired

4. Explain decision5. Add relevant data

2. Create Model

49

50

1/30/2020

26

Metric Driven Verification
Coverage & Other - Driven Verification

Coverage Driven Verification

Goal:
How to achieve same (or higher) coverage in less time with less resources

Answer:
• Learn what is going on during the process
• Use that information during the process:

Coverage

Time

1.REGRESSION TESTS

2.CREATING TESTS

- Rank / prioritize / select

- Decide which tests to create

51

52

1/30/2020

27

Data:
Tests & Coverage

Model:
Learn impact of each test separately Ti -> Ci

Use:
Select subset of tests that give the fastest
coverage

1. REGRESSION TESTS

Coverage Coverage

1. Given data

2. Create Model

COVERAGETESTS

Learn: Coverage is “a function” of tests

Use: Run only tests that impact coverage

Problems
1. Model

1. Quality depends on test “consistency” regarding coverage

Testing conditions are a function of Test, HW & Methodology

• Impossible to re-create same testing conditions (testbench, random) even if we run
the same test

• Even if possible: same test changes path when HW changes
2. Different chosen coverage metrics point to different views

functional/ toggle/ line

1. REGRESSION TESTS

53

54

1/30/2020

28

Solution: Example 1

Metric: functional coverage
example: cache eviction achieved, buffer full achieved, lock on address challenged

Tests: functionally consistent
• test that seem to achieve similar functional coverage with small HW changes
• generally are tests that target given areas and allow for randomness
• Example: do cache eviction but different index/tag

Methodology: Run regression with given set of tests

SOLUTION Example
1. When you run – keep track of the best 10 tests to cover each cover point
2. Use the best tests first for all, then for those not covered go to the second bests, etc – and stop when you achieve coverage

Simple
here

Expensive
here

High Quality:
The functionally consistent test and coverage abstracts the RTL changes

made to implement it

1. REGRESSION TESTS

Solution: Example 2

Metric: line coverage (how many times each RTL source code line is
“ran”)

Tests: manually written
• test that were written by verification engineers to target their code.

Methodology: Run regression with given set of tests

SOLUTION Example
1. When you run – keep track of line coverage per test

2. Use that information (start with the least covered lines) and add tests until
you achieve desired line coverage

Simple
here

Expensive
here

Low Quality:
The tests can get “off track” with RTL

changes

RTL change & its IMPACT on what the test exercises

1. REGRESSION TESTS

55

56

1/30/2020

29

Data:
Scenarios / Templates & Coverage

Model:
Learn impact of each Scenario /Template separately Si -> Ci

Use:
• Run several times the same Scenario
& learn the coverage distribution it achieves

Si-> Ci
• Select the subset of scenarios that give the

fastest coverage

2. CREATING TESTS

Coverage Coverage

1. Given data

2. Create Model

COVERAGEScenarios/
Templates

Learn: Coverage is “a function” of Scenarios

Use: Create only tests that impact coverage

Generate Tests for Coverage

Requires the capability of identifying the dependency between a
coverage need and the input into the TCG that would cover it
• Learning coverage as function of Scenario, then use the inverse:

Input into TCG identified as a function of Coverage
• Use

• Offline TCG – scenarios
• Online TCG (testbenches) – bias & online controls that guide the activity

towards a given area (behavior)
• Success depends on the methodology:

(functional coverage – scenario based TCG)

2. CREATING TESTS

57

58

1/30/2020

30

Solution Example 3
Metric: line & toggle

TCG: random seed

Methodology: Have sequences of random on top of random
(with biases and constraints) to determine testing
conditions

Difficult SOLUTION:
Lean the “bias” -> impose the bias as constraint

Simple
here

Same “test” – Same RTL – different area is being exercised

Simple
here

What about
Here?

These Solutions Require CONTROL over the process !!

2. CREATING TESTS

Additional Data (examples)

1. HW code repository
Learn: line coverage as a function of (test)

(which test is best to cover a given line)
Use:

Run first the tests that cover the changed lines (4%, 6% to get same coverage)

2. Issue data base
Learn: fail likelihood as a function of (test)

(which test/ scenario has the highest chance of finding a bug)

3. Documentation
Learn: correlations between “areas”

(if bug found – likely to find another one in same or in a close “area”)

Data

Model

Goal

59

60

1/30/2020

31

Different Models

Simple model:
“record top tests per coverage need“

Clustering:
• Use a distance function to determine the similarities between tests

(if they cover the same areas or not – requires hierarchical approach)
• Clustering on tests to ID groups, & choose from each group the best tests
• Useful also for test templates.

Data

Model

Goal

Different Goals

• Identify the tests (input into TCG) with higher chances of
finding a bug

• DATA: documentation, issues DB, repository (which RTL file
contained bugs in the past), coverage, ...

Data

Model

Goal

61

62

1/30/2020

32

Performance

Metric 1 Metric 2 Metric 3 Metric 4 … Metric k

Trace 1

Trace 2

Trace 3

….

Trace n

Data
Traces x Metrics x Configurations

63

64

1/30/2020

33

Goals

• Metrics :
• Identify how the metrics change from a configuration to another
• Is there a correlation to each other, or to the IPC
• Do all metrics put together explain the IPC ?

- yes: the weight per metric for IPC
- no: there are “missing” metrics to be identified

Metrics
Configurations

Traces

Goals

Traces (benchmarks)
• Distance function that shows which benchmarks react in the same way to

varying configurations
• Group benchmarks on how similar they are
• Identify the group representative(s) that shows

the most impact of change
• Use that information to

• Decrease # runs
• Manage traces additions/exclusions

Metrics
Configurations

Traces

65

66

1/30/2020

34

Goals

Configurations:
• Decide on the optimal configuration

Metrics
Configurations

Traces

IPC

Configuration Changes

How would you do it ?

Resource Usage

67

68

1/30/2020

35

Formal

Goal: Which heuristics are best for a given type of problem
Data:

• problem (type)
• heuristic (used)
• resources (time/ processing power/ memory size)

Model:
• Learn resource = function (problem, heuristic)

Use:
• Heuristic = function (problem)

Processing Power

Goal: What resources to allocate per simulation request
Data:

• Project for which we run the simulation
• Model requested
• Team requesting it
• Test case name (family)
• Allocated resources
• Used resources

Model:
• Needed Resources = function (project/model/team/testname)

Use:
• Allocate resources accordingly, with a likelihood of being wrong and still save

69

70

1/30/2020

36

Management

Project Management

• Complex systems intended to control a project’s management
• Use a variety of sources
• Have a variety of goals

71

72

1/30/2020

37

http://verifyter.com/technology/vo

Stopping the tests at an optimal time

http://verifyter.com/technology/debug

https://vimeo.com/verifyter

Reinforcement Learning
For (really) intelligent tools

73

74

1/30/2020

38

Reinforcement
Learning

Agent
• Gives input to the environment
• Gets information from it
• Decides which next input to give

TO MAXIMIZE REWARD

Reinforcement
Learning Write an agent that controls the

process and monitors its state.
The agent “sees” how close each input
brings the process to the desired
reward
The agent “learns” how to get the
process to maximize the rewardHW dev.

process

Your
code
Here

Input/
controls output/

observations

How close you are to what you want to achieve !!!
(Reward)

The ‘nonlinear function’
we try to guess and change the input to get the
Desired reward

The algorithm that you use
Q-Table, NN ?

75

76

1/30/2020

39

Your
code
Here

NN
• Keras
• Lots of doc. available

Q-Table
• Easy to implement and

understand

https://adventuresinmachinelearning.com/reinforcement-learning-tensorflow/

Takes into account
the reward the next state can
potentially bring to you

Input/
controls

How close you are to what you want to achieve !!!
(Reward)

The ‘nonlinear function’
we try to guess and change the input to get the
Desired reward

The algorithm that you use
Q-Table, NN ?

Your
code
Here

output/
observations

HW dev.
process

77

78

1/30/2020

40

Conditions for success

• Fast process
• Takes a lot of steps to learn the input needed to maximize reward
• Not useful if each step takes a long time and is expensive

• Reward measurement
• The reward is a value that shows how well the system did considering the

input. Difficult to define and to measure. (distance function from some
desired state)

• Process Uncertainty
• Works best if I/O without internal memory
• Processes have internal memories – more difficult to learn

79

