
1

Verification Testbench

Nagesh Loke

ARM CPU Verification Lead/Manager

2

▪ This lecture aims to:

▪ provide an idea of what a testbench is

▪ help develop an understanding of the various components of a testbench

▪ build an appreciation of the complexity in a testbench

▪ highlight why it is as much a software problem as is a hardware problem

What to expect?

3

▪ A testbench helps build an environment to test and verify a design

▪ The key components of a testbench are:

▪ Stimulus

▪ is used to drive inputs of the design to generate a high-level of confidence

▪ should be able to exercise all normal input scenarios and a good portion of critical combinations

with ease

▪ Checker

▪ is a parallel & independent implementation of the specification

▪ is used verify the design output against the modeled output

▪ Coverage

▪ Helps measure quality of stimulus

▪ Provides a measure of confidence to help determine closure of verification effort

What is a testbench?

4

▪ An ALU has

▪ an input clock

▪ two 8-bit inputs as operands

▪ a 3-bit opcode as an operator

▪ a 16-bit output

▪ Performs the following operations:

▪ ADD, SUB, AND, OR, XOR, MUL, XNOR

What are we verifying?

A[7:0]

B[7:0]

opcode[2:0]

OUT [15:0]

clk

5

How was it done in the past?

What are some of the

issues with this approach?

6

▪ Start with a Verification plan

▪ A Verification plan talks about:

▪ various design features and scenarios that need to be tested

▪ architecture of the testbench

▪ reuse in higher level testbenches

▪ Testbench should have the ability to:

▪ test as many input data and opcode combinations as possible

▪ test different orders of opcodes

▪ stress key features/combinations

▪ use more machine time and less human time

What should the approach be?

7

▪ SystemVerilog as a hardware verification language provides a rich set of features

▪ Data Types & Aggregate data types

▪ Class, Event, Enum, Cast, Parameterization, Arrays, Associative arrays, Queues and manipulating methods

▪ OOP functionality

▪ Classes, Inheritance, Encapsulation, Polymorphism, memory management

▪ Processes

▪ fork-join control, wait statements

▪ Clocking blocks

▪ Interprocess synchronization & communication

▪ Semaphores, Mailboxes, named events

▪ Assertions

▪ Functional Coverage

▪ Virtual Interfaces

▪ Constraints

SystemVerilog

8

Components of a testbench

▪ The ALU testbench module now looks

different

▪ It includes headers for various components

▪ ALU Interface

▪ ALU Transaction

▪ ALU Monitor

▪ ALU BFM (driver)

▪ ALU Scoreboard

▪ It creates the interfaces

▪ It instantiates the DUT

9

Main Test

▪ A program block is the main entry point

▪ A bfm object and a scoreboard object are

created

▪ All the components are started

▪ A fork/join process ensures that they all

start in parallel

▪ We exit the fork statement at 0 time

▪ Simulation is stopped when $finish is called

▪ Multiple initial blocks execute in parallel

10

Transaction class

▪ The ALU transaction class:

▪ Uses an enum type for optype

▪ Uses “rand” to declare inputs that need

to be driven with random values

▪ Has a print utility that can be used with a

transaction handle/object

11

BFM/driver

▪ The BFM/driver class:

▪ Has a handle to a virtual interface

▪ Declares a alu_trxn data type

▪ Has a constructor

▪ drive() task:

◦ Does not end

◦ Creates a new transaction

◦ Randomizes the transaction

◦ Passes the handle to drive_trxn() task

▪ drive_trxn () task

◦ consumes time

◦ drives the input signals based on the values in the

trxn class

◦ Uses clocking block and non-blocking assignments

◦ Adheres to pin level timing of signals

12

Scoreboard

▪ The Scoreboard:

▪ Functionality is to continuously check the output

independent of the input stimulus

▪ check() task:

◦ Collects information from the interface and

populates the trxn class

◦ Calls a compute_expected_out function

▪ compute_expected_out() task

◦ Implements the model of the deisign

◦ Takes in the inputs and gets an expected output

◦ Compares the actual output against the expected

output

◦ Issues an error message if the comparison fails

13

ALU

How does the testbench look like?

ALU

clk

B

OUTA
alu_bfm

alu_sb

alu_tb
Process control

logic
clock

generation logic

14

▪ With a random testbench it is difficult to know what scenarios have been exercised

▪ Two techniques are typically used to get a measure of what’s done

▪ Code Coverage

▪ No additional instrumentation is needed

▪ Toggle, Statement, Expression, Branch coverage

▪ Functional Coverage

▪ Requires planning

▪ Requires instrumenting code

▪ SystemVerilog provide constructs to support functional coverage

▪ Provides detailed reports on how frequently coverage was hit with the test sample

▪ Coverage closure is an important aspect of verification quality

How do we know we are done?

15

▪ Built a directed and random testbench

▪ Discussed various components of a testbench

▪ Modularized and built in complexity into a testbench … for a reason

▪ Demonstrated that verification and testbench development requires good planning and

software skills

What did we go over …

16

ARM Cortex A72 CPU

17

ARM CCN-512 SoC Framework

18

▪ Typical processor development from scratch could be about 100s of staff years effort

▪ Multiple parallel developments, multiple sites and it takes a crowd to verify a processor

▪ The challenges are numerous – especially when units are put together as a larger unit

or a whole processor and verified

▪ Reuse of code becomes an absolute key to avoid duplication of work

▪ Multiple times it is essential to integrate an external IP into your system

▪ The IP can come with it’s own verification implementation

▪ This requires rigorous planning, code structure, & lockstep development

▪ Standardization becomes a key consideration

▪ So how do we solve this?

What are the challenges of verifying complex systems?

19

▪ https://verificationacademy.com/

▪ SV Unit YouTube Video

▪ EDA Playground

▪ http://testbench.in/

▪ Search for SystemVerilog on YouTube

Useful pointers

https://verificationacademy.com/
https://www.youtube.com/watch?v=XMH7cF-XOmY
http://www.edaplayground.com/
http://testbench.in/

20

Let’s solve this …
class base;

int a;

static bit b;

function new(int val);

a = val;

endfunction

virtual function void say_hi();

$display($psprintf("hello from base (a == %0d)", a));

endfunction

class sub extends base;

int c;

function new(int val);

super.new(val);

c = val;

endfunction

virtual function void say_hi();

super.say_hi();

$display($psprintf("hello from sub (c == %0d)", c));

endfunction

endclass

program a;

initial begin

base b1, b2;

sub s1, s2;

othersub os1;

b1 = new(1);

s1 = new(2);

os1 = new(3);

s1.say_hi();

os1.say_hi();

b2 = os1;

b2.say_hi();

$display($psprintf("b == %0d", base::b));

$display($psprintf("b == %0d", othersub::b));

end

endprogram

