Verification Testbench

Nagesh Loke
ARM CPU Verification Lead/Manager

The Architecture for the Digital World® ARM

What to expect?

= This lecture aims to:
= provide an idea of what a testbench is
= help develop an understanding of the various components of a testbench
= build an appreciation of the complexity in a testbench
= highlight why it is as much a software problem as is a hardware problem

2 ARM

What is a testbench?

A testbench helps build an environment to test and verify a design
The key components of a testbench are:
Stimulus

= is used to drive inputs of the design to generate a high-level of confidence

= should be able to exercise all normal input scenarios and a good portion of critical combinations

with ease
Checker
= is a parallel & independent implementation of the specification
= is used verify the design output against the modeled output
Coverage
= Helps measure quality of stimulus

= Provides a measure of confidence to help determine closure of verification effort

ARM

What are we verifying? _opcode[20]

= An ALU has

= an input clock

A[7:0]

= two 8-bit inputs as operands
= a 3-bit opcode as an operator
= a |6-bit output

= Performs the following operations:
= ADD, SUB,AND, OR, XOR, MUL, XNOR

clk

OUT [15:0]

ARM

How was it done in the past?

ini

end

tial begin
@(negedge clk);
opcode = 3'b00G0;

A = 8'h05;

B = 8'h50;

@(negedge clk);

assert (OUT == 8'h55);
@(negedge clk);

A = 8'hFF;
B =8'hol;
@(negedge clk);

assert (OUT == 16'h100) ;

|Ej|: |'||:-|;]E'|j|_]l:' [:-l._ l'-,_:| '

@(negedge clk);
$finish;

What are some of the
issues with this approach?

ARM

What should the approach be?

= Start with a Verification plan
= A\Verification plan talks about:

= various design features and scenarios that need to be tested
= architecture of the testbench

= reuse in higher level testbenches

= Testbench should have the ability to:

= test as many input data and opcode combinations as possible
= test different orders of opcodes
= stress key features/combinations

= use more machine time and less human time

ARM

SystemVerilog

= SystemVerilog as a hardware verification language provides a rich set of features
= Data Types & Aggregate data types

= Class, Event, Enum, Cast, Parameterization, Arrays,Associative arrays, Queues and manipulating methods
= OORP functionality

= Classes, Inheritance, Encapsulation, Polymorphism, memory management
= Processes

= fork-join control, wait statements

= Clocking blocks

= Interprocess synchronization & communication
= Semaphores, Mailboxes, named events

= Assertions

= Functional Coverage

= Virtual Interfaces

= Constraints

: ARM

Components of a testbench

“include "alu intf.svh"
“include "alu trxn.svh"

The ALU testbench module now looks
“include .
e . svh" different

“include

It includes headers for various components
= ALU Interface

ALU Transaction

ALU Monitor

ALU BFM (driver)

ALU Scoreboard

It creates the interfaces
It instantiates the DUT

module alu th ();

logic

logic [7:0] AB;
Logic [2:0] opcode ;
logic [15:0] ouT;
logic done;

// Instantiate the interface
alu intf alu_if
Ir

.clk(clk),

.B(B),

.opcode (opcode),
0UT(0oUT)

i

// Instantiate the design
ALU ALU (.*);

: ARM

Main Test

program testi @ m trn = 10 = A program block is the main entry point

alu bfm bfm new (alu_1f);

alusb sb = new (alu_if); = A bfm object and a scoreboard object are
' u:hel'uel'.ate_.a basic clock Created
ever begin = All the components are started
. = A fork/join process ensures that they all
// Call the testbench components Start in Para”el
1'|'|1"E%'.:1_1_.. begin . .
O e drive () = We exit the fork statement at 0 time
sb.check():
Join_none = Simulation is stopped when $finish is called
ena
'/ Give the test some time before $finish is " MUIt'Ple Inltlal bIOCkS execute in Para”e'

initial begin
int 1:
for {1=0; i1=num trxn*10; 1++) begin
@(negedge clk);
end

$finish;
end

: ARM

Transaction class

class alu_trxn ; = The ALU transaction class:
typedef enum

{ = Uses an enum type for optype
ADD=0, 3 . ,
SUB=1. = Uses “rand” to declare inputs that need
D’ to be driven with random values
oms = Has a print utility that can be used with a
XNOR=7 transaction handle/object

I
OPTYPE;

rand logic [7:0] a, b;
rand logic [15:0] out;

rand OPTYPE op;

function print_trxn (string name) ;
¢info ("%s: op=%s A=%h, B=%h", name, op.name, a, b);
endfunction // print_trxn

=ndclass // alu trxn

ARM

BFM/driver

class alu bfm;
virtual interface alu_intf alu_if;
alu trxn trxn;

ask drive {();
. drive_trxn (alu trxn trxn);

function new (virtual interface alu intf alu if in);

alu if = alu if _in;
endfunction // new

endclass // alu_bfm
task alu bfm::drive ();

while (1) begin
trxn = new ();
trxn. randomize(
trxn.print_trxn{"b
drive_trxn (trxn);
end

endtask // drive

task alu_bfm::drive_trxn (alu_trxn trxn);
@ alu_if.ch;
alu if.cb.opcode == trxn.op;
alu if.cb.A == trxn.a;
alu 1f.cbh.B == trxn.b;
trxn.out == alu if.ch.0OUT;
endtask // drive trxn

= The BFM/driver class:

Has a handle to a virtual interface
Declares a alu_trxn data type
Has a constructor

drive() task:
Does not end
Creates a new transaction
Randomizes the transaction
Passes the handle to drive_trxn() task

drive_trxn () task
consumes time

drives the input signals based on the values in the
trxn class

Uses clocking block and non-blocking assignments
Adheres to pin level timing of signals

ARM

Scoreboard

function alu sb::compute_

A, B;
[15:0] expected_out;
c [2:0] opcode;

trxn_in.a;
trxn_in.b;
opcode = trxn_in.op;

case (opcode)
100: expected_out

w

'b001: expected_out
'bO10 : out
'b100: expected_out

> E out

]
3
3
3
3
31

ed value (alu_trxn trxn_in);

, A=%h, B=%h, 0OU C
rxn_in.op.name, A, B, trxr cted_out

endfunction // get_expected value

task alu_sb::check ();
int i;

trxn = new ();

@ alu 1f.chb;

alu_if.ch);

.0op, alu if.cb.o
<= alu if.cb.A;
<= alu if.cb.B;
<= alu if.0uT;

pcode) ;

value (trxn);

= The Scoreboard:

Functionality is to continuously check the output
independent of the input stimulus

check() task:

Collects information from the interface and
populates the trxn class

Calls a compute_expected out function

compute_expected_out() task
Implements the model of the deisign
Takes in the inputs and gets an expected output

Compares the actual output against the expected
output

Issues an error message if the comparison fails

ARM

How does the testbench look like?

clock Process control
generation logic logic

clk

ARM

How do we know we are done!

= With a random testbench it is difficult to know what scenarios have been exercised
= Two techniques are typically used to get a measure of what’s done

Code Coverage
* No additional instrumentation is needed
= Toggle, Statement, Expression, Branch coverage
= Functional Coverage
= Requires planning
= Requires instrumenting code
= SystemVerilog provide constructs to support functional coverage

= Provides detailed reports on how frequently coverage was hit with the test sample

= Coverage closure is an important aspect of verification quality

. ARM

What did we go over ...

Built a directed and random testbench
= Discussed various components of a testbench
= Modularized and built in complexity into a testbench ... for a reason

= Demonstrated that verification and testbench development requires good planning and
software skills

.5 ARM

ARM Cortex A72 CPU

ARM® Cortex®-A72
| ARM CoreSight™ Multicore Debug and Trace

ARMvVE-A :|

ey | wice]
| | 2 3 |4

ACP || scU [L2 Cache wECC (12KB — B)
| 128-bic AMBA® 4 ACE or AMBA § CHI Coherent Bus Interface

ARM

ARM CCN-512 SoC Framework

ARM’s CCN-512 Mixed Traffic Infrastructure SoC Framework

Up to 4 Virtualized Interrupts Heterogeneous processors — CPU, GPU, D5P and Up to 24 1O
accelerators cohErent

Ccores per
cluster

‘,' ‘;' 1\..‘ interfaces for

F " accelerators

d “e and 11O

]

Coroex TP Ciawrtist TP 1045 . "
’ I o LH e LHI] ' I i W "_.i"
EEr TR i S o r B 8
Ly LT Comer-A5T Cirtan-A57T Cairtal-AS T § - LGB . ..i'r

— ’ 1 #
Upto 12 I ’ | I Cortex CPU [Cortex cPU NIC-400 T
coherent == _I _I _I _I :Lila- I::ufr.ul "*

. - - - . Y D Virtualisation Corellink FMLU-S00
F'U!lt‘rﬁ Coprn=Ah 4 Coernen A% Lo AN 8 T A]

A N I N I N l"

Corelink™ CCM-512 Cacha Cobarent MNetwork

F=33HB LY euche

Hemory Memory HMemary Hemory
e Crantroller Controller Cantrollar Coontrgbr
Integrated DMC-530 DHC-510 CIC-E 30 DMC-530
L3 cache Toan afl =T T I e | SR CER e |
—_— . DDRAIEG | | DOR4.5I00 DOE4-1300 DA)200 ; ’ '
-
Up to Cuad -
-
channel o
DDOR34 =72 Peripheral address space

ARM

What are the challenges of verifying complex systems?

= Typical processor development from scratch could be about 100s of staff years effort
= Multiple parallel developments, multiple sites and it takes a crowd to verify a processor

= The challenges are numerous — especially when units are put together as a larger unit
or a whole processor and verified

= Reuse of code becomes an absolute key to avoid duplication of work

= Multiple times it is essential to integrate an external IP into your system
= The IP can come with it’s own verification implementation

= This requires rigorous planning, code structure, & lockstep development
= Standardization becomes a key consideration

= So how do we solve this?

. ARM

Useful pointers

https://verificationacademy.com/

SV Unit YouTube Video

EDA Playground

http://testbench.in/

= Search for SystemVerilog on YouTube

ARM

https://verificationacademy.com/
https://www.youtube.com/watch?v=XMH7cF-XOmY
http://www.edaplayground.com/
http://testbench.in/

Let’s solve this ...

class base;
int a;
static bit b;
function new(int val);
a = val;
endfunction
virtual function void say_hi();
$display($psprintf("hello from base (a == %0d)", a));
endfunction
class sub extends base;
int ¢;
function new(int val);
super.new(val);
c = val;
endfunction
virtual function void say_hi();
super.say_hi();
$display($psprintf("hello from sub (c == %0d)", c));
endfunction

endclass

20

program a;

initial begin
base bl, b2;

sub sl,s2;

othersub osl;

bl = new(l);
s| = new(2);

os| = new(3);

sl.say_hi();
os|.say_hi();

b2 = osl;
b2.say_hi();

$display($psprintf("b == %0d", base::b));
$display($psprintf("b == %0d", othersub::b));
end

endprogram

ARM

