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Array Architecture

2n words of 2m bits each

If n >> m, fold by 2k into fewer rows of more columns

Good regularity – easy to design

Very high density if good cells are used
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Different Memory Array Structures
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12-Transistor SRAM Cell

Basic building block: SRAM Cell

Holds one bit of information, like a latch
Must be read and written

12-transistor (12T) SRAM cell

Use a simple latch connected to bitline
46× 75 λ unit cell
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6-Transistor SRAM Cell

Cell size accounts for most of array size

Reduce cell size at expense of complexity

6T SRAM Cell

Used in most commercial chips
Data stored in cross-coupled inverters

Read:

Precharge bit, bit b
Raise wordline

Write

Drive data onto bit,
bit b
Raise wordline
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SRAM Read

Precharge both bitlines high

Then turn on wordline

One of two bitlines will be pulled down by the cell
Example: A = 0, A b = 1

Bit discharges, bit b stays high
But A bumps up slightly

Read stability
A must not flip
N1 >> N2
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SRAM Write

Drive one bitline high, the other low

Then turn on wordline

Bitlines overpower cell with new value
Example: A = 0, A b = 1, bit = 1, bit b = 0

Force A b low, then A rises high

Writability
Must overpower feedback inverter
N2 >> P1
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SRAM Sizing

High bitlines must not overpower inverters during reads

But low bitlines must write new value into cell
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Hold Margin
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Read and Write Margins

ECE Department, University of Texas at Austin Lecture 13. Memories and PLAs Jacob Abraham, October 13, 2020 10 / 59

SRAM Cell Size vs. Feature Size
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Decoders

n : 2n decoder consists of 2n n-input AND gates

One needed for each row of memory
Build AND from NAND or NOR gates

Static CMOS Pseudo-nMOS
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Large Decoders

For n > 4, NAND gates become slow
Break large gates into multiple smaller gates
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Pre-Decoding

Many of the gates are
redundant

Factor out common gates
into predecoder
Saves area
Same path effort
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Column Circuitry

Some circuitry is required for each column

Bitline conditioning
Sense amplifiers
Column multiplexing

Bitline Conditioning

Precharge bitlines high
before reads

Equalize bitlines to minimize
voltage difference when using
sense amplifiers
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Sense Amplifiers

Bitlines have many cells attached
Example, 32-kbit SRAM has 256 rows x 128 cols
128 cells on each bitline

tpd ∝ (C/I)∆V
Even with shared diffusion contacts, 64C of diffusion
capacitance (big C)
Discharged slowly through small transistors (small I)

Sense amplifiers are triggered on a small voltage swing
(reduce ∆V )

Example: Differential Pair Amplifier

Differential pair
requires no clock

But always
dissipates static
power
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Clocked Sense Amplifier

Clocked sense amp saves power

Requires sense clk after enough bitline swing

Isolation transistors cut off large bitline capacitance
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Twisted Bitlines

Sense amplifiers also amplify noise

Coupling noise is severe in modern processes
Try to couple equally onto bit and bit b
Done by twisting bitlines
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Column Multiplexing

Recall that array may be folded for good aspect ratio

Example: 2K word x 16 array folded into 256 rows × 128
columns

Must select 16 output bits from the 128 columns
Requires 16 8:1 column multiplexers
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Tree Decoder Multiplexer

Column MUX can use pass transistors

Use nMOS only, precharge outputs

One design is to use k series transistors for 2k : 1 mux

No external decoder logic needed
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Single Pass-Gate Multiplexer

Eliminate series transistors with separate decoder
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Example:2-Way Muxed SRAM
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Multiple Ports

We have considered single-ported SRAM

One read or one write on each cycle

Multiported SRAMs are needed for register files

Examples:

Multicycle MIPS must read two sources or write a result on
some cycles
Pipelined MIPS must read two sources and write a third result
each cycle
Superscalar MIPS must read and write many sources and
results each cycle
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Dual-Ported SRAM

Simple dual-ported SRAM

Two independent single-ended reads
Or one differential write

Do two reads and one write by time multiplexing

Read during ph1, write during ph2
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Serial Access Memories

Serial access memories do not use an address

Shift Registers
Tapped Delay Lines
Serial In Parallel Out (SIPO)
Parallel In Serial Out (PISO)
Queues (FIFO, LIFO (Stacks))

Some of these used in circuitry for communications

Shift Registers Store and Delay Data

Simple design: cascade of registers

Watch your hold times!
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Denser Shift Registers

Flip-flops are not very area-efficient

For large shift registers, keep data in SRAM instead

Move R/W pointers to RAM rather than data

Initialize read address to first entry, write to last
Increment address on each cycle
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Tapped Delay Line

Shifter register with a programmable number of stages

Set number of stages with delay controls to mux

Example, 0 – 63 stages of delay
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Serial/Parallel Conversion
Serial In Parallel Out

1-bit shift register reads in serial data

After N steps, presents N-bit parallel output

Parallel In Serial Out

Load all N bits in parallel when shift = 0

Then shift one bit out per cycle
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Queues

Queues allow data to be read and written at different rates

Read, Write each use their own clock, data

Queue indicates whether it is full or empty

Build with SRAM and read/write counters (pointer
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FIFO, LIFO Queues

First In First Out (FIFO)

Initialize read and write pointers to first element
Queue is EMPTY
On write, increment write pointer
If write almost catches read, Queue is FULL
On read, increment read pointer

Last In First Out (FIFO)

Also called a stack
Use a single stack pointer for read and write

ECE Department, University of Texas at Austin Lecture 13. Memories and PLAs Jacob Abraham, October 13, 2020 30 / 59

4-Transistor Dynamic RAM Cell

Remove the two p-channel transistors from the static RAM
cell to get a four-transistor dynamic RAM cell

Data stored as charge on gate capacitors (complementary
nodes)

Data must be refreshed regularly

Dynamic cells must be designed very carefully
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3-Transistor Dynamic RAM Cell

Data stored on the gate of a transistor

Need two additional transistors, one for write and the other
for read control
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1-Transistor Dynamic RAM Cell

Cannot get any smaller than this: data stored on a (trench)
capacitor C, need a transistor to control data

Bit line normally precharged to 1/2 VDD (need a well-designed
sense amplifier)

Value of capacitances must be chosen very carefully; voltages
on stored bit and bit-line affected by charge sharing
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Trench Capacitor
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Single-Event Upsets

High-energy particle produces electron-hole pairs in substrate;
when collected at source and drain, will cause current pulse

Cosmic Radiation

A “bit-flip” can occur in the memory cell due to the charge
generated by the particle – called a “single-event upset”

Seen in spacecraft electronics in the past, now in computers
on the ground

Source: Aerospace Corporation
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Embedded Memory IP (Intellectual Property)

Example, from ARM

Single Port SRAM

Dual Port SRAM

Single Port Register file

Two Port Register file

Via and Diffusion Programmable ROM

Memory Compilers

Automatically generate memory structures

High density, high speed and low power SRAMs

Over 15 different foundries and 65 process variants from 28nm
to 250nm
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ARM Embedded Memory IP

SRAM IP

Register File IP

Source: ARM (http://www.arm.com/products/physical-ip/
embedded-memory-ip/index.php)
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Content Addressable Memories (CAMs)

Extension of ordinary memory (e.g., SRAM)

Read and write memory as usual
Also match to see which words contain a key
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Translation Lookaside Buffer (TLB) Using CAM
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10-Transistor CAM Cell

Add four match transistors to 6T SRAM

56× 43 λ unit cell
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CAM Cell Operation

Read and write like ordinary SRAM

Additional “match” operation

For matching:

Leave wordline low
Precharge
matchlines
Place key on
bitlines
Matchlines evaluate

Miss line

Pseudo-nMOS NOR
of match lines
Goes high if no
words match
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Read-Only Memories (ROMs)

Read-Only Memories are nonvolatile

Retain their contents when power is removed

Mask-programmed ROMs use one transistor per bit

Presence or absence determines 1 or 0

Example: 4-word × 6-bit ROM

Looks like 6 4-input pseudo-nMOS NORs

Can be represented by a “dot diagram”

Dots indicate 1s in ROM

Word 0: 010101

Word 1: 011001

Word 2: 100101

Word 3: 101010
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Building Logic with ROMs

ROM as lookup table
containing truth table

n inputs, k outputs
requires 2n words × k bits
Changing function is easy
– reprogram ROM

Finite State Machine

n inputs, k outputs, s bits
of state
Build with 2n+s × (k + s)
bit ROM and (k + s) bit
register
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PROMs and EPROMs

Programmable ROMs (PROMs)

Build array with transistors at every site
Burn out fuses to disable unwanted transistors

Electrically Programmable ROMs (EPROMs)

Use floating gate to turn off unwanted transistors
EPROM, EEPROM, Flash
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Flash Memory

Source: www.ctimes.com.tw
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NAND Flash String
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Erase and Program Operations

Issues: Retention Time, Endurance

“Wear leveling” to increase endurance
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Flash Memory Architecture

Source: EE Times
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Programmable Logic Arrays (PLAs)

A Programmable Logic Array performs any function in
sum-of-products form

Literals: inputs and complements
Products terms: AND of literals
Outputs: OR of Product terms

Example: Full Adder
s = ab̄c̄+ ābc̄+ āb̄c+ abc
c = ab+ bc+ ac
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NOR-NOR PLAs

ANDs and ORs not very efficient in CMOS

Dynamic or Pseudo-nMOS NORs very efficient

Use DeMorgan’s Law to convert to all NORs
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PLA Schematic and Layout
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Dynamic PLA
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PLAs versus ROMs

The OR plane of the PLA is like the ROM array

The AND plane of the PLA is like the ROM decoder

PLAs are more flexible than ROMs

No need to have 2n rows for n inputs
Only generate the product terms that are needed
Take advantage of logic simplification

ECE Department, University of Texas at Austin Lecture 13. Memories and PLAs Jacob Abraham, October 13, 2020 53 / 59

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, October 13, 2020



VLSI Design, Fall 2020
13. Memories and PLAs 28

Row Redundancy to Tolerate Failures
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Column Redundancy to Tolerate Failures
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Radiation-Hardened SRAM Cell

Alternative Solution: Use Error Correcting Codes
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Field Programmable Logic Arrays (FPGAs)

Lookup Table based logic cell

Xilinx 4000 Series
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Xilinx 4000 Interconnect Architecture

Source: Xilinx
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Resistive RAM (RRAM)

2-D RRAM
3-D cross-point

Source: Crossbar, Inc.
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