
14. Introducton to Verilog

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

VLSI Design
Fall 2020

October 15, 2020

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 1 / 37

Synthesis in the Design Flow

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 1 / 37

Logic Synthesis

Design described in a Hardware Description Language (HDL)

Verilog, VHDL

Simulation to check for correct functionality

Simulation semantics of language

Synthesis tool

Identifies logic and state elements
Technology-independent optimizations (state assignment, logic
minimization)
Map logic elements to target technology (standard cell library)
Technology-dependent optimizations (multi-level optimization,
gate strengths, etc.)

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 2 / 37

Features of Verilog

A concurrent language (syntax similar to C)

Models hardware

Provides a way to specify concurrent activities

Allows timing specifications

Originally developed by Gateway Design Automation,
acquired by Cadence, then became IEEE Standard
1364-1995 (Open Verilog International)

Updated, now Verilog 2005 (IEEE Standar 1364-2005)

System Verilog 2009 (superset of Verilog), (IEEE
Standard 1800-2009)

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 3 / 37

Applications of Verilog

Description of design at a higher level

Development of formal models

System documentation

Simulation to uncover errors (bugs) in design

Synthesis of designs

Design reuse

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 4 / 37

Design Process Cycle

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 5 / 37

Verilog Modes

1 Structural: describes the structure of the hardware
components, including how ports or modules are connected
together

module contents are built in gates (and, or, xor, not,

nand, nor, xnor, buf) or other modules previously declared

2 Behavioral: describes what should be done in a module

module contents are C-like assignment statements, loops

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 6 / 37

Structural Model of Adder

Structural models: interconnections of primitive gates (AND, OR,
NAND, NOR, etc.) and other modules

module HA(a, b, s, c);

input a,b;

output s,c;

xor G1(s, a, b);

and G2(c, a, b);

endmodule

module FA(X, Y, Z, S, C);

input X, Y, Z;

output S, C;

HA FA1(X, Y, S1, C1);

HA FA2(S1, Z, S, C2);

or O1(C, C2, C1);

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 7 / 37

Specification of Gate-Level Model

Gate function

Verilog built-in: and, nand, or, nor, xor, xnor, buf,

not, etc.

Gate specification format example:

and #delay inst-name (out, in1, in2,..., ink);

delay and inst-name are optional

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 8 / 37

Logic Values

A bit can have any of these values

0 representing logic low (false)
1 representing logic high (true)
X representing either 0, 1, or Z
Z representing high impedance for tri-state
(unconnected inputs are set to Z)

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 9 / 37

Test Generation

Test gen: Generates test and captures the response

FA: The design under test

Wrapper: Wraps Test gen and FA into one module

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 10 / 37

Test Generation, Cont’d

module HA(a,b,s,c};

input a,b;

output s,c;

xor G1

and G2(c,a,b);

endmodule

module FA(X,Y,Z,S,C);

input X,Y,Z;

output S,C;

HA FA1(X,Y,S1,C1);

HA FA2(S1,Z,S,C2);

or O1(C,C2,C1);

endmodule

module test_gen(a,b,c,sum,cout);

output a,b,c;

input sum,cout;

reg a,b;

initial begin

$monitor($time," A=%b B=%b Sum=%b Cout=%b",

a,b,sum,cout);

a = 0; b = 0;

#5 a = 1;

#5 b = 1;

#5 c = 1;

end

endmodule

module wrapper;

wire a,b,sum,cout;

FA(a,b,c,sum,cout);

test_gen(a,b,c,sum,cout);

endmodule

initial

tells Verilog to execute all statements within begin and end once it starts

monitor

tells Verilog to monitor the list of variables and every time a variable
changes, it prints the string

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 11 / 37

Test Generation, Cont’d

module test_gen(a,b,c,sum,cout);

output a,b,c;

input sum,cout;

reg a,b;

initial begin

$monitor($time," A=%b B=%b Sum=%b Cout=%b",

a, b, sum, cout);

a = 0; b = 0; c = 0;

#5 a = 1;

#5 b = 1;

#5 c = 1;

end

endmodule

module wrapper

wire a, b, sum, cout;

FA(a,b,c,sum,cout);

test_gen(a,b,c,sum,cout);

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 12 / 37

Behavioral Modeling
Behavioral model consists of always and initial constructs
All behavioral statement must be within these blocks
Many initial/always statements can exist within a module

initial constructs execute once at the start of the simulation

initial

begin

<statements>

end

always constructs execute at the beginning of the simulation and
continually loop

always @(sensitivity-list)

begin

<statements>

end

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 13 / 37

Behavioral Timing

Advance time when

#20 delay 20 time units
@(list) delay until an event occurs
wait: delay until a condition is satisfied

@r rega = regb; // load rega when r changes

@(posedge r) rega = regb;

// load rega on positive edge of r

@(negedge r) rega = regb;

// load rega on negative edge of r

wait(!r) rega = regb;

// execution is suspended until r is 0

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 14 / 37

Edge Triggered D-Flip-Flop

module dff(q,qb,d,clk);

input d,clk;

output q,qb;

reg q;

always @(posedge clk)

begin

q = d;

// left hand side must be a register

end

not G1(qb,q);

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 15 / 37

Shift Register

module dff(q,d,clk);

input d,clk;

output q;

reg q;

always @(posedge clk)

q=d;

endmodule

module shift(Y0,X1,CLK);

input CLK, X1;

output Y0;

dff(d1,X1,CLK);

dff(d2,d1,CLK);

dff(Y0,d2,CLK);

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 16 / 37

Behavioral Statements

if(expr) then <statement>; else <statement>;

case(selector) val0: <statement>; val1: <statement>;

default: <statement>; endcase;

for(i=0; i <=10; i=i+1) A = B + i;

i=0; while(i <= 15)

begin A = B + i; i = i + 1; end

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 17 / 37

Concurrent Constructs

@ means wait for a change in value

@(a) w=4; Wait for ‘a’ to change to resume execution

wait(condition)

wait(a==1) w=4; Wait for ‘a’ to become 1 before resuming
execution

Another Example

module mux(f,sel,b,a);

input sel, b, c;

output f;

reg f;

always @(sel or a or b)

if(sel==1) f=b;

else f=a;

endmodule

assign f=sel ? b:a;

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 18 / 37

Case Statement

module function_table(f,a,b,c);

input a,b,c;

output f;

reg f;

always @(a or b or c)

case({a,b,c}) // concatenate a,b,c to form a 3-bit number

3’b000: f=1’b0;

3’b001: f=1’b1;

3’b010: f=1’b0;

3’b011: f=1’b0;

3’b100: f=1’b0;

3’b101: f=1’b1;

3’b110: f=1’b0;

3’b111: f=1’b0;

endcase

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 19 / 37

Adder With Delays

module adder(co,su,a,b,ci);

input a,b,ci;

output co,su;

xor #(4,5) (su,a,b,cin); // rise time = 4, fall time = 5

or #(5) (co,ab,bc,ac); // rise time = 5, fall time = 5

and #(4,2) (ab,a,b), // three similar AND gates

(ac,a,ci),

(bc,b,ci);

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 20 / 37

Adder With Continuous

module adder(co,su,a,b,ci); // Specifies combinational logic

input a,b,ci;

output co,su;

assign su = a^b^cin, // Any time the right hand side changes,

co = a&b|b&ci|a&ci; // the simulator re-evaluates the output

endmodule

Another Version with Delays

module adder(co,su,a,b,ci); // Specifies combinational logic

input a,b,ci;

output co,su;

assign #(5,4)su = a^b^cin,

assign #(10,4)co = a&b|b&ci|a&ci;

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 21 / 37

Blocking and Nonblocking Assignments

= represents a blocking assignment
execution flow withing the procedure is blocked until
assignment is completed
evaluations of concurrent statements in the same step are also
blocked until assignment is done

<= represents a nonblocking assignment
right hand side evaluated immediately
assignment to left hand side postponed until other evaluations
in current time step are completed

Example: Swap bytes in a word

The code on the right
won’t work
Why?
How can you fix it?

// swap bytes in a word

always @(posedge clk)

begin

word[15:8] = word[7:0]

word[7:0] = word[15:8]

end

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 22 / 37

Counter

module counter(Q , clock, clear);

output [3:0] Q;

input clock, clear;

reg [3:0] Q;

always @(posedge clear or negedge clock)

begin

if (clear) Q = 4’d0;

else Q = (Q + 1); // Q = (Q + 1) % 16;

end

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 23 / 37

Counter, Cont’d
module stimulus;

reg CLOCK, CLEAR;

wire [3:0] Q;

counter c1(Q, CLOCK, CLEAR);

initial

begin

$monitor($time, " Count Q = %b Clear= %b", Q[3:0],CLEAR);

CLEAR = 1’b1;

#34 CLEAR = 1’b0;

#200 CLEAR = 1’b1;

#50 CLEAR = 1’b0;

#400 $stop;

end

initial begin CLOCK = 1’b0; forever #10 CLOCK = ~CLOCK;end

endmodule
ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 24 / 37

Bus Select
module slect_bus(out, b0, b1, b2, b3, enable, s);

parameter n = 16;

parameter Z = 16’bz; // define a 16 bit of z

output [1:n] out; // n-bit output

input [1:n] b0, b1, b2, b3; // n-bit inputs

input enable;

input [1:2] s;

tri [1:n] data; // tri-state net

tri [1:n] out = enable ? data: Z; // net declaration

// with continuous assignment

assign

data = (s==0) ? bus0 : Z,// 4 continuous assignments

data = (s==1) ? bus1 : Z,

data = (s==2) ? bus2 : Z,

data = (s==3) ? bus3 : Z;

endmodule
ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 25 / 37

Tri-State Latch

module tri_latch(q, nq, clk, data, enable);

output q, nq;

input clk, data, enable;

tri q, nq;

not #5 (ndata, data);

nand #(3, 5) (wa, data, clk), (wb, ndata, clk);

nand #(12,15) (ql, nql, wa), (nql, ql, wb);

bufif1 #(3,5,13) // rise, fall, change to z

q_dr (q, ql, enable), // when enable = 1, q=ql

nq_dr (nq, nql, enable); // when enable = 0, q=ql=z

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 26 / 37

User Defined Primitives

primitive mux(mux,cntr,A,B);

output mux;

input cntr, A, B;

table

// cntr A B mux

0 1 ? : 1 ; // ? represents don’t care

0 0 ? : 0 ;

1 ? 0 : 0 ;

1 ? 1 : 1 ;

x 0 0 : 0 ;

x 1 1 : 1 ;

endtable

endprimitive

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 27 / 37

User Defined Primitives, Cont’d

primitive latch(q, clk, data);

output q; reg q;

input clk, data;

table

// clk data state output/nxtstate

0 1 : ? : 1 ;

0 0 : ? : 0 ;

1 ? : ? : - ; // represents no change

endtable

endprimitive

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 28 / 37

Looping

module mult(res, a, b);

parameter size = 8, longzise = 16;

input [size:1] a, b;

output [longsize:1] res;

reg [size:1] a, b;

reg [longsize:1] res;

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 29 / 37

Looping, Cont’d

always @(a or b)

begin :mult

reg [longsize:1] shifta, shiftb;

shifta = a;

shiftb = b;

result = 0;

repeat (size)

begin

if(shiftb[1]) // check if bit1 == 1

res = res + shifta;

shifta = shifta << 1;

shiftb = shiftb >> 1;

end

end

endmodule
ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 30 / 37

Looping, Cont’d

module count_ones(res, a);

output [3:0] res; reg [3:0] res;

input [7:0] a;

always @(a)

begin :count1s

reg [7:0] tempa;

res = 0; tempa = a;

while(tempa) // while tempa != 0

begin

if(tempa[0]) res = res + 1;

tempa = tempa >> 1;

end

end

endmodule

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 31 / 37

Parallel Blocks

Its statement are executed concurrently

Delay values for each statement are relative to the simulation
when control enter block

Control passed out of the block when the last time-ordered
statement is executed

Order of statements is not important

Parallel Block

fork

#100 r = 100;

#50 r = 50;

#150 r = 150;

join

Equivalent Sequential Block
assuming c changes every 50
units

begin

@c r = 50;

@c r = 150;

@c r = 200;

end

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 32 / 37

Another Example

areg is loaded when both A and B occur in any order

begin

fork

@A;

@B;

join

areg = breg;

end

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 33 / 37

Tasks

Tasks provide a way to execute common procedures for
different places

They provide a means of breaking large procedure into smaller

Tasks make it easy to debug and read the source code

task proc_name;

input a, b;

inout c;

output d, e;

<statement>

endtask

This can be enabled by:
proc name(v, w, x, y, z);

which performs the following assignment:
a=v; b=w; c=x;

The following is performed on completion
of the task:
x=c; y=d; z=e;

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 34 / 37

Functions

They differ from task is the following way
They return a value that to be used in an expression
They must of of zero simulation time duration
They must have at least one input

function [7:0] func_name;

input [15:0] a;

begin

<statement>

func_name = expression;

end

endfunction

To enable this:
new address = a * func name(old address)

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 35 / 37

Latches and Flip-Flops (Flops)

A Latch is synthesized if you write:

always @(CLK) begin

if (CLK) begin

LatchOut = LatchInput

end

end

A Flop is synthesized with:

always @(posedge CLK) begin

LatchOut = LatchInput

end

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 36 / 37

Constructs Not Supported in Synthesis

initial used only in test benches

events for synchronizing test bench components

real real data type not supported

time time data type not supported

force/release not supported

assign/deassign not supported for reg data types
but assign on wire data type supported

fork/join use non-blocking assignments to get the same effect

primitives only gate-level primitives supported

table UDP and tables not supported

ECE Department, University of Texas at Austin Lecture 14. Introducton to Verilog Jacob Abraham, October 15, 2020 37 / 37

