17. Design Verification

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

VLSI Design
Fall 2020

October 27, 2020

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 1 / 49

Reliability in the Life of an Integrated Circuit — |

Fabrication

Design “bugs”
Verification (Simulation, Formal)

Process variations,
defects
Process Monitors

49

ECE Department, University of Texas at Austin

Lecture 17. Design Verification Jacob Abraham, October 27, 2020 1/

Reliability in the Life of an Integrated Circuit — Il

Test cost,
coverage
Design for Test,
Built-In Self Test

Tester

Test escapes,
wearout,
environment
e System Self-Test,
Application Error Detection,
System Fault Tolerance,

Resilience

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 2 / 49

Analyzing Complex Designs

Need to (implicitly) search a very large state space
o Find bugs in a design — verification process
o Generate tests for faults in a manufactured chip
Basic algorithms for analyzing even combinational blocks (SAT,
ATPG) are NP-complete
Approaches to deal with real designs
@ Exploit hierarchy in the design
@ Develop abstractions for parts of a design

Cost of a new mask set can be on the order of $1+ Million for a
large chip

@ Cannot afford mistakes

o Want working “first silicon”

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 3 / 49

Many Aspects of Verification

Verifying the functional correctness of the design
Performance verification
o Architecture level (number of clocks to perform a function)

(]

Timing verification
o Circuit level (how fast can we clock?)

(]

Verifying power consumption

(]

Verifying signal integrity and variation tolerance

(]

Checking correct implementation of specifications at each
level

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 4 / 49

The Verification Problem

Integrated Circuit Complexity

Transistors
Per Die

101
1965 Actual Data

10°4 m MOS Arrays o MOS Logic 1975 Actual Data 2560 s512m'C :
108 1975 Projection 8M Plt:! e
Y A “Icﬁ:“rs::ncessor Pentium® :"
108 1 nﬁgnlmm!\l

10°

10

10°%

102

10!

10°.

o Need to deal with this complexity
@ A subtle bug could produce an incorrect result in a specific
state for a specific data input
e Seen as a “sequence dependency” when simulating a design
(specific sequence of inputs to reach the erroneous state)

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020

The (In)Famous Pentium FDIV Problem

Graph of x, y, x/y in a small region by Larry Hoyle

Pentium FDIV Error

=
- o AR
5 -,

ECE Department, University of Texas at Austin

October 27, 2020 6 / 49

State-Space Explosion

May need to check a very large number of states to uncover a bug

Problem: the number of protons in the universe is around 1

080

which is less than the number of states for a system with 300

storage elements!

3000 —

Number of States

Number of protons
in the universe

Number of stars
in the universe

World population

T T T 1
1000 10000 100000 1000000

Number of latches
in Itanium processor,

Jacob Abraham, October 27, 2020

T T
10 100

Number of Storage Elements

Lecture 17. Design Verification

7/ 49

ECE Department, University of Texas at Austin

What is a “Bug"?

Design does not match the specification

@ One problem: complete (and consistent) specifications may
not exist for many products

@ For example, the difficulty in designing an X86 compatible
chip is not in implementing the X-86 instruction set
architecture, but in matching the behavior with Intel chips

Something which the customer will complain about

o Marketing: “It’s not a bug, it’s a feature”

Jacob Abraham, October 27, 2020 8 / 49

ECE Department, University of Texas at Austin Lecture 17. Design Verification

Mentor /Wilson Group Functional Verification Study

Study Participants

Gates of Logic and Datapath Excluding Memories

) 2020 Mentor Graphics Corporation Menlor

10 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 9 / 49

Time Spent in Verification — ASICs

® Test Planning

m Testbench Development

® Creating Test and Running Simulation

W Debug

u Other

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz

ECE Department, University of Texas a 5 Lecture 17. Design Verification Jacob Abraham, October 27, 2020

Mean Peak Number of Engineers on ASIC Projects

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Venfication Study
. . Groue el A S s 3 2 Menkimtbay 3 1 2020 Mentor Graphics Corporstion Mentor

24 HF, 2020 Wilson Research Group Functional Verffication Study, Oct 2020

More verification engineers than designers! This is an
average: for very large chips, there could be 3-5 times more
verification engineers.

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 11 /

Design Completion Compared to Original Schedule in

ASICs

30%
2012: 67% Behind Schedule
2016: 69% Behind Schedule
2020: 68% Behind Schedule)
-—2018
20
=0
&
0%
More than 109 10%EARLY ~ ON-SCHEDULE 10% BEHIND 20% 30% 40% 50%
EARLY SCHEDULE
Actual ASIC design complet d to riginal schedul

nctional ¥

34 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Delays in verification are a major contributor to delaying
schedules

Source: Wilson Research Group and Mentor, 2020 Functional Verification
Study — https://go.mentor.com /5ffxz

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020

Number of Required ASIC Spins Before Production

501 2012
= 2016
2020
0%
IRST SILI 2 3 4 5 s 7 SPINS or MORE
Number of Required ASIC Spins Before Production
ssowes, § Pt 1 S d © 2020 Mentor Graohes Corperation Menlor
36 HF, 2020 Wilson Research Group Functions! Verification Study, Oct 2020 s

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz

ECE Department, University of Te Austin Lecture 17. Design Verification Jacob Abraham, October 27,

Design Bug Distribution in Pentium 4

Type of Bug ‘ % ‘ @ Source: EE Times, July 4, 2001
“Goof” 12.7 | @ 42 Million Transistors
Miscommunication 11.4 | o High-level description: 14 million
Microarchitecture 9.3 lines of RTL

Logic/Microcode Changes | 9.3 | o 100 high-level bugs found through
Corner Cases 8.0 formal verification

Power Down 5.7

Documentation 4.4

Complexity 3.9

Initialization 3.4

Incorrect RTL Assertions 2.8

Design Mistake 2.6

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 14 / 49

Flaws Contributing to Respins in ASICs

50% 2012
82016

2020

pe of ASIC F

nal Veerif

© 2020 Mentor Graphics Corporation Mentor

38 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2018 Functional Verification
Study — https://go.mentor.com/5ffxz

at Austin Lecture 17. Design Verification Jacob Abraham, Octobel

Design and Implementation Verification

Design Verification
(property checking) »
micro-

architecture RTL Simulation

Implementation Verification
(equivalence checking)

Gate-level simulation,
Emulation

gate level

!

Implementation Verification

(logic versus schematic) Circuit simulation
1

Timing verification,
Signal integrity analysis,
Power analysis

ECE Department, University of Texas at Austin Lecture 17. Design Verification

Jacob Abraham, October 27, 2020

Verification Approaches

e Simulation (the most popular verification method)
o Cycle based, functional simulation for billions of cycles
o Good coverage metrics usually not available
o Computationally very expensive, slightest optimization has
huge impact
e Emulation
o Capital intensive
o Map design to be verified on FPGAs
e Run OS and application at MHz rates
o Formal verification
o Exhaustive verification of small modules

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020

Evaluating the Complete Design

@ Is there a verification technique which can be applied to the
entire chip?

@ Only one approach which scales with the design: Simulation

@ Most common technique now used in industry

@ Cycle-based simulation can exercise the design for millions
of cycles
o Unfortunately, the question of when to stop simulation is open
o No good measures of coverage

e Emulation
o Used to verify the first Pentium (windows booted on FPGA
system)
o Developing another accurate model is an issue
o Currently used for post-silicon validation of Intel Atom
platform

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 18 / 49

Metrics Used to Evaluate Quality of Simulation

2012
Code coverage
u2016
=2020
0% 10% 20% 30% 40% 50% 60% 70% 80%
Design Projects
Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study e e e -

€4 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2020 Functional Verification
Study — https://go.mentor.com /5ffxz

ECE Department, University of Te Austin Lecture 17. Design Verification Jacob Abraham, October 27,

Simulation Speeds

Comparing speeds of simulating a microprocessor on a computer

@ Performance timers: 10K — 50K cycles/sec.
@ Behavior level: 1000 — 10K cycles/sec.
@ R-T level: 20 — 1000 cycles/sec.

o Gate level: 4 — 25 cycles/sec.

o Switch level: 1/4 — 1 cycles/sec.

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 20 / 49

When are we Done Simulating?

When do you tape out?

@ Motorola criteria (EE Times, July 4, 2001)
40 billion random cycles without finding a bug

Directed tests in verification plan are completed
Source code and/or functional coverage goals are met

Diminishing bug rate is observed

e 6 6 o6 o

A certain date on the calendar is reached

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 21 / 49

Signoff Criteria

When all tests documented in the verification plan are complete and pass

When the project plan schedule says sign-off, assuming verification ok

When the emulated or prototyped design s working in-lab

When code or functional coverage says we have achieved our target

‘When we can no-longer think of any more tests to write

When the rate of bugs found per week drops below a specified goal

When the project plan says sign-off, regardiess of status

Other

ASIC Design Projects

© 2000 Mentor Graghics Coporation Menior

wp and Mentor, A Sie Business, 2020 Functional Ven

68 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2020 Functional Verification
Study, https://go.mentor.com/5ffxz

sign Verification Jacob Abraham, Oct

Emulation Technologies

Source: Quickturn, Inc.
Asynchronous

Clock-less logic

Logic Array (FPGA)

based emulation

Delay dependent clock

Gated clocks Design

Styles
Multiple clocks Processor Array
based emulation
Single clock
Synchronous I i i i

-40K gates -200K gates -1M gates -5M gates

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 23 / 49

Architecture Verification

o Verify that the design matches the architectural specification
@ Extensive testing the common approach

o Conformance testing
@ Approaches used in industry

o Manually writing tests

o Generating pseudo-random instruction sequences
Using biased pseudo-random instructions
Generating instruction sequences from typical workloads
Example: to verify an X86 clone, capture instruction trace on
another X86 machine is running application

© 6 o

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020

Example of Verifying Processors

Verifying PowerPC Processors

@ Model based test generator

o Expert system which contains a formal model of processor
architecture, and a heuristic data base of testing knowledge

o Example, testing knowledge accumulated during the
verification of the first PowerPC design included about 1,000
generation and validation functions (120,000 lines of C code)

@ PowerPC behavioral simulator has about 40,000 lines of C++
code

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 202!

MAP1000 Media Processor Verification (Shen, 1999)

System Architecture

@ Many instructions issued in parallel — very long instruction
word (VLIW)

Move scheduling and resource management out of hardware
to optimizing compilers

Specialized function units for serial processing
Wide fast memory buses

Large data and instruction caches

®© 6 6 o

Intelligent memory 1/0

o Including “Strips/Strides” and background transfers
o Sophisticated data transfer engines

v

Verification Challenges

o Complex data/instruction caches, memory /O mechanisms,
large number of functional units

N

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 26 / 49

Pre-Silicon Design Verification

TG directed tests

pseudo-random tests

C compiler QA tests
random C tests

Applets
Mini—kernel

Reference Design under :
model (REF) test (DUT) QU'Clktt{Jm
simulation RTL simulation emulation

[I
vy vy
Trace and final Trace and final
state comparison state comparison

Notification
Bug tracking system =

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 27 / 49

Post-Silicon Design Verification

Boot: PCl| & ROM

RTOS

|10 system test

Self-checking test

AC-3

MPEG2

Applications + RTOS

v

Quickturn
emulation

vy v

Real chip

y v

Comparison

Analysis
& debug

Failure

Failure

Notification

Bug tracking system

=2

ECE Department, University of Texas at Austin

Lecture 17. Design Verification

Jacob Abraham, October 27, 2020

28 / 49

Effectiveness of Tests

O directed 69%
B random 16%
B mini kernel 1%
OOSboot 1%

B DVD 2%
m 3D 2%
E2D 1%

O emulation 1%
B others 7%

Coverage-Driven Verification

Attempt to Verify that the Design Meets Verification Goals

o Define all the verification goals up front in terms of
“functional coverage points”
e Each bit of functionality required to be tested in the design is
described in terms of events, values and combinations
o Functional coverage points are coded into the HVL (Hardware
Verification Language) environment (e.g., Specman ‘e’)
e Simulation runs can be measured for the coverage they
accomplish
@ Focus on tests that will accomplishing the coverage
“coverage driven testing”)
e Then fix bugs, release constraints, improve the test

environment
o Measurable metric for verification effort

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 30 / 49

Open Questions

Are There Better Measures of Coverage?

o Coverage of statements in RTL would be a necessary but not
sufficient

o Coverage of all states is impractical even for a design with a
few hundred state variables

@ Is there a way to identify a subset of state variables that
would be tractable, and would lead to better bug detection?

@ How would these variables be related to the behavior of the
design?

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 31 / 49

Assertions

o Assertions capture knowledge about how a design should
behave

Used in coverage-based verification techniques

Assertions help to increase observability into a design, as well
as the controllability of a design
o Each assertion specifies

o legal behavior of some part of the design, or
o illegal behavior of part of the design

Examples of assertions (will be specified in a formal language)
o The fifo should not overflow
e Some set of signals should be “one-hot”
o If a signal occurs, then ...

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 32 / 49

Simulation Monitors and Assertions

assert_never underflow (clk, reset_n,
(g_valid==1'b1) && (g_underflow==1'b1)):

module assert_never (clk, reset_
input clk, reset_n, test_expr;

parameter severity_level=0;

parameter msg="ASSERT NEVER VIOLATION';

/I ASSERT. PRAGMA HERE

Asynopsys transiate_off

“ifdef ASSERT_ON
integer error_count;
initial error_count=0;
- dways @(posetge clk) begin
De S I g n “ifdef ASSERT_GLOBAL_RESET
if (ASSERT_GLOBAL_RESET I= 1'b0) begin
“else
if (reset_n |= 0) begin // active Jow reset_n
“endif

if (test_expr== 1'b1) begin
error_count = error_count + 1,
“ifdef ASSERT_MAX_REPORT_ERROR
if {error_count<="ASSERT_MAX_REPORT_ERROR)
“endif
Plisplay (" %s : severity %0d : time %0t : %", msg, severity_level, time);
if (severtty_level == 0) §finish;
end
end
end
“endif
Hsynopsys translate_on

endmodule

University of Texas at Austin ign Verification Jacob Abraham, Oci

Commercial Tools

Mentor Graphics

s nersesarisn

B Be B Vew Smhior Sl ope Tace Yindow Hebp SLES

[wm LI X 3 &l O]

L

i C e
CERE-B-«

Boogl o

Synopsys

w0

e Grop

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020

Formal Verification Approaches

@ Theorem Proving: Relationship between a specification and
an implementation is regarded as a theorem in a logic, to be
proved within the framework of a proof calculus

o Used for verifying arithmetic circuits in industry
@ Model Checking: The specification is in the form of a logic

formula, the truth of which is determined with respect to a
semantic model provided by an implementation

e Starting to be used to check small modules in industry
@ Equivalence Checking: The equivalence of a specification and
an implementation checked
e Most common industry use of formal verification
@ Symbolic Trajectory Evaluation: Properties specified as

assertions about circuit state (pre- and post- conditions),
verified using symbolic simulation

o Used to verify embedded memories in industry

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 35 / 49

Equivalence Checking

@ Most common technique of formal verification used in
industry today

o Typically, gate-level compared with RTL

o Canonical representations, such as Binary Decision Diagrams
(BDDs), or Satisfiability Solvers used for the comparison

o Boolean equivalence checking is NP-complete
o Multipliers require an exponential number of BDD nodes

o Commercial tools available from many vendors

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020

Equivalence Checking

o Validate that the implementation of a module is consistent
with the specification

o Can use simulation or formal techniques
o Combinational or sequential modules

Example: Specification in RTL

module mux(input s, dO, di,

output y);
assign y = s 7 d1 : dO;
endmodule

Example: Implementation at the gate level

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 37 / 49

Decision Tree for A B&® C

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 38 / 49

Reduced, Ordered BDD (ROBDD)

F=AeBspC
Reduced, Ordered BDDs (ROBDDs) are canonical
Can represent sets of states, state-transition relations, etc.

Structure and complexity of ROBDDs for Symmetric Functions?

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 39 / 49

Satisfiability (SAT) Solvers

Can a Boolean Function be Satisfied?

@ Cast an equivalence checking problem as a SAT problem

@ Starts by converting Boolean formula into the Conjunctive
Normal Form (CNF) — (product of sums)

(a+b+c)at+e+ f)e+d+g)...

@ Goal is to find an assignment satisfying every term (if any
clause is 0, there is no satisfying assignment)

o Commercial and Open SAT solvers available
@ Most verification tools now use BDDs + SAT
@ Some bring in ATPG ideas — called “structural SAT”

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 40 / 49

Use of ATPG for Equivalence Checking

@ Use a tool (Automatic Test Pattern Generator) which
generates manufacturing tests

o Detecting a “stuck-at-0" fault at Y (requires an input which
generates a 1 on Y) will prove inequivalence of the two circuits

@ Approach is not memory limited (like BDDs)

_ » CKT1 -

— ™ CKT 2
F2

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 41 / 49

Design Verification

o Digital systems similar to reactive programs

o Digital systems receive inputs and produce outputs in a
continuous interaction with their environment

@ Behavior of digital systems is concurrent because each gate in
the system simultaneously evaluating its output as a function
of its inputs

Check Properties of Design

@ Since specification is usually not formal, check design for
properties that would be consistent with the specification

o Safety “something bad will never happen”
o Liveness Property: “something good will eventually happen”

@ Temporal Logic and variations commonly used to specify
properties

o Example: Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL)

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 42 / 49

Example of Computation Tree

Traffic light controller

Start ' I
UnroII
Part of controller
finite-state machine o °

Computation Tree

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 43 / 49

System Verilog Assertions (SVA)

@ Assertions: Predicates placed in program

@ Immediate and Concurrent Assertions

@ assert, assume, cover, expect constructs

Immediate Assertions

assert (a == b);

Concurrent Assertions

assert property (@(posedge clk) req | — ack);

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 44 /

Cadence Formal Verification

Visualize™
Fumalvenncsiontaew | |
ormal
Formal = ;
Assisted
R
Closure

g

Verification |P Catalog

‘l}

Formal Formal
i Assisted

Incisive i i

Simutation Simulation

Assisted
Emulation
Engines

JasperGold & Incisive:
Fermal Engines

P

atadium

Emulation &
Acceleration

IEEE Standard Languages & Industry Standard AP|s

3

ign Verification

Jacob Abraham, Oc

Adoption tatic (Formal) Techniques in ASICs

60%
55% ™M
uiM
50%
“n u>80M
1%
n 40%
s 30% _
=y 26'
i 24%
20% 19%
10%
0%
Formal Property Checking Formal Apps
Formal Technology Adoption by ASIC/IC Design Size
Source: Wilson Research Group and Mentor, A Siemens Business, 2t
- © 2020 Mentar Graphics Corporation W

62 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz

ECE Department, University of Te: Austin Lecture 17. Design Verification Jacob Abraham, October 27,

Dealing with State Explosion
Verification is a very difficult problem

@ Even combinational equivalence checking problems (ATPG,
SAT) are NP-complete

o Checking sequential properties is only possible for small
designs

o Additional problem of generating correct “wrappers” for the
module being verified

y

How can we deal with the complexity?

@ Use more powerful computers?

o Computers double in capability (assuming we can program
multi-core processors) every couple of years
o Adding one state variable to a design doubles its states

@ Exploit hierarchy in the design

@ Develop powerful abstractions

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 47 / 49

Program Slicing

A Slice of a Design

@ Represents behavior of the design with respect to a given set
of variables (or slicing criterion)

(]

Proposed for use in software in 1984 (Weiser)

Slice generated by a control/data flow analysis of the program
code

Slicing is done on the structure of the design, so scales well

(]

“Static analysis”

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 48 / 49

Dramatic Example of Design Bug Detection and Recovery

BAE RAD750 (133 MHz) Science Lab on Mars

@ Mars Science Laboratory — MSL (“Curiosity”) relies
extensively on BAE RAD750 chip running at 133 MHz

o During cruise to Mars (circa January 2012), MSL processes
are unexpectedly reset — no code bug is found (7 months
remaining before landing)

@ Misbehavior eventually traced to processor hardware
malfunction: instruction flow depends on processor

temperature
@ Only possible fix was via software — done successfully

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 49 / 49

