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Reliability in the Life of an Integrated Circuit — |

Fabrication

Design “bugs”
Verification (Simulation, Formal)

Process variations,
defects
Process Monitors
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Reliability in the Life of an Integrated Circuit — Il

Test cost,
coverage
Design for Test,
Built-In Self Test

Tester

Test escapes,
wearout,
environment
e System Self-Test,
Application Error Detection,
System Fault Tolerance,

Resilience
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Analyzing Complex Designs

Need to (implicitly) search a very large state space
o Find bugs in a design — verification process
o Generate tests for faults in a manufactured chip
Basic algorithms for analyzing even combinational blocks (SAT,
ATPG) are NP-complete
Approaches to deal with real designs
@ Exploit hierarchy in the design
@ Develop abstractions for parts of a design

Cost of a new mask set can be on the order of $1+ Million for a
large chip

@ Cannot afford mistakes

o Want working “first silicon”
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Many Aspects of Verification

Verifying the functional correctness of the design
Performance verification
o Architecture level (number of clocks to perform a function)

(]

Timing verification
o Circuit level (how fast can we clock?)

(]

Verifying power consumption

(]

Verifying signal integrity and variation tolerance

(]

Checking correct implementation of specifications at each
level
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The Verification Problem

Integrated Circuit Complexity
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o Need to deal with this complexity
@ A subtle bug could produce an incorrect result in a specific
state for a specific data input
e Seen as a “sequence dependency” when simulating a design
(specific sequence of inputs to reach the erroneous state)
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The (In)Famous Pentium FDIV Problem

Graph of x, y, x/y in a small region by Larry Hoyle

Pentium FDIV Error
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State-Space Explosion

May need to check a very large number of states to uncover a bug

Problem: the number of protons in the universe is around 1

080

which is less than the number of states for a system with 300

storage elements!
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What is a “Bug"?

Design does not match the specification

@ One problem: complete (and consistent) specifications may
not exist for many products

@ For example, the difficulty in designing an X86 compatible
chip is not in implementing the X-86 instruction set
architecture, but in matching the behavior with Intel chips

Something which the customer will complain about

o Marketing: “It’s not a bug, it’s a feature”
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Mentor /Wilson Group Functional Verification Study

Study Participants

Gates of Logic and Datapath Excluding Memories

) 2020 Mentor Graphics Corporation Menlor

10 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz
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Time Spent in Verification — ASICs

® Test Planning

m Testbench Development

® Creating Test and Running Simulation

W Debug

u Other

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz
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Mean Peak Number of Engineers on ASIC Projects

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Venfication Study
. . Groue el A S s 3 2 Menkimtbay 3 1 2020 Mentor Graphics Corporstion Mentor

24 HF, 2020 Wilson Research Group Functional Verffication Study, Oct 2020

More verification engineers than designers! This is an
average: for very large chips, there could be 3-5 times more
verification engineers.

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz
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Design Completion Compared to Original Schedule in

ASICs
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34 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Delays in verification are a major contributor to delaying
schedules

Source: Wilson Research Group and Mentor, 2020 Functional Verification
Study — https://go.mentor.com /5ffxz
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Number of Required ASIC Spins Before Production
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Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz
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Design Bug Distribution in Pentium 4

Type of Bug ‘ % ‘ @ Source: EE Times, July 4, 2001
“Goof” 12.7 | @ 42 Million Transistors
Miscommunication 11.4 | o High-level description: 14 million
Microarchitecture 9.3 lines of RTL

Logic/Microcode Changes | 9.3 | o 100 high-level bugs found through
Corner Cases 8.0 formal verification

Power Down 5.7

Documentation 4.4

Complexity 3.9

Initialization 3.4

Incorrect RTL Assertions 2.8

Design Mistake 2.6
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Flaws Contributing to Respins in ASICs
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82016

2020

pe of ASIC F

nal Veerif

© 2020 Mentor Graphics Corporation Mentor

38 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2018 Functional Verification
Study — https://go.mentor.com/5ffxz
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Design and Implementation Verification

Design Verification
(property checking) »
micro-

architecture RTL Simulation

Implementation Verification
(equivalence checking)

Gate-level simulation,
Emulation

gate level

!

Implementation Verification

(logic versus schematic) Circuit simulation
1

Timing verification,
Signal integrity analysis,
Power analysis
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Verification Approaches

e Simulation (the most popular verification method)
o Cycle based, functional simulation for billions of cycles
o Good coverage metrics usually not available
o Computationally very expensive, slightest optimization has
huge impact
e Emulation
o Capital intensive
o Map design to be verified on FPGAs
e Run OS and application at MHz rates
o Formal verification
o Exhaustive verification of small modules
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Evaluating the Complete Design

@ Is there a verification technique which can be applied to the
entire chip?

@ Only one approach which scales with the design: Simulation

@ Most common technique now used in industry

@ Cycle-based simulation can exercise the design for millions
of cycles
o Unfortunately, the question of when to stop simulation is open
o No good measures of coverage

e Emulation
o Used to verify the first Pentium (windows booted on FPGA
system)
o Developing another accurate model is an issue
o Currently used for post-silicon validation of Intel Atom
platform
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Metrics Used to Evaluate Quality of Simulation

2012
Code coverage
u2016
=2020
0% 10% 20% 30% 40% 50% 60% 70% 80%
Design Projects
Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study e e e -

€4 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2020 Functional Verification
Study — https://go.mentor.com /5ffxz
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Simulation Speeds

Comparing speeds of simulating a microprocessor on a computer

@ Performance timers: 10K — 50K cycles/sec.
@ Behavior level: 1000 — 10K cycles/sec.
@ R-T level: 20 — 1000 cycles/sec.

o Gate level: 4 — 25 cycles/sec.

o Switch level: 1/4 — 1 cycles/sec.
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When are we Done Simulating?

When do you tape out?

@ Motorola criteria (EE Times, July 4, 2001)
40 billion random cycles without finding a bug

Directed tests in verification plan are completed
Source code and/or functional coverage goals are met

Diminishing bug rate is observed

e 6 6 o6 o

A certain date on the calendar is reached
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Signoff Criteria

When all tests documented in the verification plan are complete and pass

When the project plan schedule says sign-off, assuming verification ok

When the emulated or prototyped design s working in-lab

When code or functional coverage says we have achieved our target

‘When we can no-longer think of any more tests to write

When the rate of bugs found per week drops below a specified goal

When the project plan says sign-off, regardiess of status

Other

ASIC Design Projects

© 2000 Mentor Graghics Coporation Menior

wp and Mentor, A Sie Business, 2020 Functional Ven

68 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2020 Functional Verification
Study, https://go.mentor.com/5ffxz
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Emulation Technologies

Source: Quickturn, Inc.
Asynchronous

Clock-less logic

Logic Array (FPGA)

based emulation

Delay dependent clock

Gated clocks Design

Styles
Multiple clocks Processor Array
based emulation
Single clock
Synchronous I i i i

-40K gates -200K gates -1M gates -5M gates
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Architecture Verification

o Verify that the design matches the architectural specification
@ Extensive testing the common approach

o Conformance testing
@ Approaches used in industry

o Manually writing tests

o Generating pseudo-random instruction sequences
Using biased pseudo-random instructions
Generating instruction sequences from typical workloads
Example: to verify an X86 clone, capture instruction trace on
another X86 machine is running application

© 6 o
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Example of Verifying Processors

Verifying PowerPC Processors

@ Model based test generator

o Expert system which contains a formal model of processor
architecture, and a heuristic data base of testing knowledge

o Example, testing knowledge accumulated during the
verification of the first PowerPC design included about 1,000
generation and validation functions (120,000 lines of C code)

@ PowerPC behavioral simulator has about 40,000 lines of C++
code
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MAP1000 Media Processor Verification (Shen, 1999)

System Architecture

@ Many instructions issued in parallel — very long instruction
word (VLIW)

Move scheduling and resource management out of hardware
to optimizing compilers

Specialized function units for serial processing
Wide fast memory buses

Large data and instruction caches

®© 6 6 o

Intelligent memory 1/0

o Including “Strips/Strides” and background transfers
o Sophisticated data transfer engines

v

Verification Challenges

o Complex data/instruction caches, memory /O mechanisms,
large number of functional units

N
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Pre-Silicon Design Verification

TG directed tests

pseudo-random tests

C compiler QA tests
random C tests

Applets
Mini—kernel

Reference Design under :
model (REF) test (DUT) QU'Clktt{Jm
simulation RTL simulation emulation

[ I
vy vy
Trace and final Trace and final
state comparison state comparison

Notification
Bug tracking system =
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Post-Silicon Design Verification

Boot: PCl| & ROM

RTOS

|10 system test

Self-checking test

AC-3

MPEG2

Applications + RTOS

v

Quickturn
emulation

vy v

Real chip

y v

Comparison

Analysis
& debug

Failure

Failure

Notification

Bug tracking system

=2
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Effectiveness of Tests

O directed 69%
B random 16%
B mini kernel 1%
OOSboot 1%

B DVD 2%
m 3D 2%
E2D 1%

O emulation 1%
B others 7%




Coverage-Driven Verification

Attempt to Verify that the Design Meets Verification Goals

o Define all the verification goals up front in terms of
“functional coverage points”
e Each bit of functionality required to be tested in the design is
described in terms of events, values and combinations
o Functional coverage points are coded into the HVL (Hardware
Verification Language) environment (e.g., Specman ‘e’)
e Simulation runs can be measured for the coverage they
accomplish
@ Focus on tests that will accomplishing the coverage
“coverage driven testing”)
e Then fix bugs, release constraints, improve the test

environment
o Measurable metric for verification effort
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Open Questions

Are There Better Measures of Coverage?

o Coverage of statements in RTL would be a necessary but not
sufficient

o Coverage of all states is impractical even for a design with a
few hundred state variables

@ Is there a way to identify a subset of state variables that
would be tractable, and would lead to better bug detection?

@ How would these variables be related to the behavior of the
design?
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Assertions

o Assertions capture knowledge about how a design should
behave

Used in coverage-based verification techniques

Assertions help to increase observability into a design, as well
as the controllability of a design
o Each assertion specifies

o legal behavior of some part of the design, or
o illegal behavior of part of the design

Examples of assertions (will be specified in a formal language)
o The fifo should not overflow
e Some set of signals should be “one-hot”
o If a signal occurs, then ...
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Simulation Monitors and Assertions

assert_never underflow ( clk, reset_n,
(g_valid==1'b1) && (g_underflow==1'b1)):

module assert_never (clk, reset_
input clk, reset_n, test_expr;

parameter severity_level=0;

parameter msg="ASSERT NEVER VIOLATION';

/I ASSERT. PRAGMA HERE

Asynopsys transiate_off

“ifdef ASSERT_ON
integer error_count;
initial error_count=0;
- dways @(posetge clk) begin
De S I g n “ifdef ASSERT_GLOBAL_RESET
if (ASSERT_GLOBAL_RESET I= 1'b0) begin
“else
if (reset_n |= 0) begin // active Jow reset_n
“endif

if (test_expr== 1'b1) begin
error_count = error_count + 1,
“ifdef ASSERT_MAX_REPORT_ERROR
if {error_count<="ASSERT_MAX_REPORT_ERROR)
“endif
Plisplay (" %s : severity %0d : time %0t : %", msg, severity_level, time);
if (severtty_level == 0) §finish;
end
end
end
“endif
Hsynopsys translate_on

endmodule
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Formal Verification Approaches

@ Theorem Proving: Relationship between a specification and
an implementation is regarded as a theorem in a logic, to be
proved within the framework of a proof calculus

o Used for verifying arithmetic circuits in industry
@ Model Checking: The specification is in the form of a logic

formula, the truth of which is determined with respect to a
semantic model provided by an implementation

e Starting to be used to check small modules in industry
@ Equivalence Checking: The equivalence of a specification and
an implementation checked
e Most common industry use of formal verification
@ Symbolic Trajectory Evaluation: Properties specified as

assertions about circuit state (pre- and post- conditions),
verified using symbolic simulation

o Used to verify embedded memories in industry
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Equivalence Checking

@ Most common technique of formal verification used in
industry today

o Typically, gate-level compared with RTL

o Canonical representations, such as Binary Decision Diagrams
(BDDs), or Satisfiability Solvers used for the comparison

o Boolean equivalence checking is NP-complete
o Multipliers require an exponential number of BDD nodes

o Commercial tools available from many vendors
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Equivalence Checking

o Validate that the implementation of a module is consistent
with the specification

o Can use simulation or formal techniques
o Combinational or sequential modules

Example: Specification in RTL

module mux(input s, dO, di,

output y);
assign y = s 7 d1 : dO;
endmodule

Example: Implementation at the gate level
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Decision Tree for A B&® C
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Reduced, Ordered BDD (ROBDD)

F=AeBspC
Reduced, Ordered BDDs (ROBDDs) are canonical
Can represent sets of states, state-transition relations, etc.

Structure and complexity of ROBDDs for Symmetric Functions?
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Satisfiability (SAT) Solvers

Can a Boolean Function be Satisfied?

@ Cast an equivalence checking problem as a SAT problem

@ Starts by converting Boolean formula into the Conjunctive
Normal Form (CNF) — (product of sums)

(a+b+c)at+e+ f)e+d+g)...

@ Goal is to find an assignment satisfying every term (if any
clause is 0, there is no satisfying assignment)

o Commercial and Open SAT solvers available
@ Most verification tools now use BDDs + SAT
@ Some bring in ATPG ideas — called “structural SAT”
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Use of ATPG for Equivalence Checking

@ Use a tool (Automatic Test Pattern Generator) which
generates manufacturing tests

o Detecting a “stuck-at-0" fault at Y (requires an input which
generates a 1 on Y) will prove inequivalence of the two circuits

@ Approach is not memory limited (like BDDs)

_ »  CKT1 -

— ™ CKT 2
F2
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Design Verification

o Digital systems similar to reactive programs

o Digital systems receive inputs and produce outputs in a
continuous interaction with their environment

@ Behavior of digital systems is concurrent because each gate in
the system simultaneously evaluating its output as a function
of its inputs

Check Properties of Design

@ Since specification is usually not formal, check design for
properties that would be consistent with the specification

o Safety “something bad will never happen”
o Liveness Property: “something good will eventually happen”

@ Temporal Logic and variations commonly used to specify
properties

o Example: Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL)
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Example of Computation Tree

Traffic light controller

Start ' I
UnroII
Part of controller
finite-state machine o °

Computation Tree
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System Verilog Assertions (SVA)

@ Assertions: Predicates placed in program

@ Immediate and Concurrent Assertions

@ assert, assume, cover, expect constructs

Immediate Assertions

assert (a == b);

Concurrent Assertions

assert property (@(posedge clk) req | — ack);
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Adoption tatic (Formal) Techniques in ASICs

60%
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Formal Property Checking Formal Apps
Formal Technology Adoption by ASIC/IC Design Size
Source: Wilson Research Group and Mentor, A Siemens Business, 2t
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62 HF, 2020 Wilson Research Group Functional Verification Study, Oct 2020

Source: Wilson Research Group and Mentor, 2020 Functional Verification

Study — https://go.mentor.com /5ffxz
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Dealing with State Explosion
Verification is a very difficult problem

@ Even combinational equivalence checking problems (ATPG,
SAT) are NP-complete

o Checking sequential properties is only possible for small
designs

o Additional problem of generating correct “wrappers” for the
module being verified

y

How can we deal with the complexity?

@ Use more powerful computers?

o Computers double in capability (assuming we can program
multi-core processors) every couple of years
o Adding one state variable to a design doubles its states

@ Exploit hierarchy in the design

@ Develop powerful abstractions
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Program Slicing

A Slice of a Design

@ Represents behavior of the design with respect to a given set
of variables (or slicing criterion)

(]

Proposed for use in software in 1984 (Weiser)

Slice generated by a control/data flow analysis of the program
code

Slicing is done on the structure of the design, so scales well

(]

“Static analysis”

ECE Department, University of Texas at Austin Lecture 17. Design Verification Jacob Abraham, October 27, 2020 48 / 49




Dramatic Example of Design Bug Detection and Recovery

BAE RAD750 (133 MHz) Science Lab on Mars

@ Mars Science Laboratory — MSL (“Curiosity”) relies
extensively on BAE RAD750 chip running at 133 MHz

o During cruise to Mars (circa January 2012), MSL processes
are unexpectedly reset — no code bug is found (7 months
remaining before landing)

@ Misbehavior eventually traced to processor hardware
malfunction: instruction flow depends on processor

temperature
@ Only possible fix was via software — done successfully
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