

Reliability in the Life of an Integrated Circuit – I

Design

Fabrication

ECE Department, University of Texas at Austin

Design "bugs" Verification (Simulation, Formal)

Wafer

Process variations, defects Process Monitors

Jacob Abraham, October 27, 2020 1 / 49

Department of Electrical and Computer Engineering, The University of Texas at Austin J. A. Abraham, October 27, 2020

Reliability in the Life of an Integrated Circuit – II

System

ECE Department, University of Texas at

Package

environment System Self-Test, Error Detection, Fault Tolerance,

Test cost, coverage Design for Test, Built-In Self Test

Test escapes, wearout,

Resilience

Jacob Abraham, October 27, 2020 2 / 49

Jacob Abraham, October 27, 2020 3 / 49

Analyzing Complex Designs

Need to (implicitly) search a very large state space

- Find bugs in a design verification process
- Generate tests for faults in a manufactured chip

Basic algorithms for analyzing even combinational blocks (SAT, ATPG) are NP-complete

Approaches to deal with real designs

- Exploit hierarchy in the design
- Develop abstractions for parts of a design

Cost of a new mask set can be on the order of 1+ Million for a large chip

• Cannot afford mistakes

ECE Department, University of Texas at Austin

• Want working "first silicon"

Many Aspects of Verification

- Performance verification
 - Architecture level (number of clocks to perform a function)
- Timing verification

ECE Department, University of Texas at Austin

- Circuit level (how fast can we clock?)
- Verifying power consumption
- Verifying signal integrity and variation tolerance
- Checking correct implementation of specifications at each level

Jacob Abraham, October 27, 2020 4 / 49

The (In)Famous Pentium FDIV Problem

ECE Department, University of Texas at a

Graph of x, y, x/y in a small region by Larry Hoyle

State-Space Explosion May need to check a very large number of states to uncover a bug Problem: the number of protons in the universe is around 10^{80} , which is less than the number of states for a system with 300 storage elements! 10 Number of States 10 10 100 10000 10 100000 1000 1000000 Number of Storage Elements ECE Department, University of Texas at Austin b Abraham, October 27, 2020 7 / 49

Abraham, October 27, 2020 6 / 49

Mentor/Wilson Group Functional Verification Study

ECE Department, University of Texas at Austin

Jacob Abraham, October 27, 2020 8 / 49

Jacob Abraham, October 27, 2020 11 / 49

Mean Peak Number of Engineers on ASIC Projects

ECE Department, University of Texas at Austin

Source: Wilson Research Group and Mentor, 2020 Functional Verification Study – https://go.mentor.com/5ffxz

Number of Required ASIC Spins Before Production

Lecti

ECE Department, University of Texas at Austin

ob Abraham, October 27, 2020 12 / 49

Design Bug Distribution in Pentium 4

Type of Bug	%
"Goof"	12.7
Miscommunication	11.4
Microarchitecture	9.3
Logic/Microcode Changes	9.3
Corner Cases	8.0
Power Down	5.7
Documentation	4.4
Complexity	3.9
Initialization	3.4
Incorrect RTL Assertions	2.8
Design Mistake	2.6

ECE Department, University of Texas at

ECE Department, University of Texas at Austin

- Source: EE Times, July 4, 2001
- 42 Million Transistors
- High-level description: 1+ million lines of RTL
- 100 high-level bugs found through formal verification

Jacob Abraham, October 27, 2020 14 / 49

Jacob Abraham, October 27, 2020 15 / 49

Flaws Contributing to Respins in ASICs

Verification Approaches

- Simulation (the most popular verification method)
 - Cycle based, functional simulation for billions of cycles
 - Good coverage metrics usually not available
 - Computationally very expensive, slightest optimization has huge impact
- Emulation

ECE Department, University of Texas at Austin

- Capital intensive
- Map design to be verified on FPGAs
- Run OS and application at MHz rates
- Formal verification
 - Exhaustive verification of small modules

Jacob Abraham, October 27, 2020 17 / 49

Evaluating the Complete Design

- Is there a verification technique which can be applied to the entire chip?
- Only one approach which scales with the design: Simulation
- Most common technique now used in industry
- Cycle-based simulation can exercise the design for millions of cycles
 - Unfortunately, the question of when to stop simulation is open
 No good measures of coverage
- Emulation

ECE Department, University of Texas at Au

Used to verify the first Pentium (windows booted on FPGA system)

Jacob Abraham, October 27, 2020 18 / 49

- Developing another accurate model is an issue
- Currently used for post-silicon validation of Intel Atom platform

Metrics Used to Evaluate Quality of Simulation

 pmparing speeds of simulating a microprocessor on a computer Performance timers: 10K – 50K cycles/sec. Behavior level: 1000 – 10K cycles/sec. R-T level: 20 – 1000 cycles/sec.
 Performance timers: 10K – 50K cycles/sec. Behavior level: 1000 – 10K cycles/sec. R-T level: 20 – 1000 cycles/sec.
 Performance timers: 10K – 50K cycles/sec. Behavior level: 1000 – 10K cycles/sec. R-T level: 20 – 1000 cycles/sec.
 Performance timers: 10K – 50K cycles/sec. Behavior level: 1000 – 10K cycles/sec. R-T level: 20 – 1000 cycles/sec.
 Performance timers: 10K – 50K cycles/sec. Behavior level: 1000 – 10K cycles/sec. R-T level: 20 – 1000 cycles/sec.
 Behavior level: 1000 – 10K cycles/sec. R-T level: 20 – 1000 cycles/sec.
• R-T level: 20 – 1000 cycles/sec.
• Gate level: 4 – 25 cycles/sec.
• Switch level: $1/4 - 1$ cycles/sec.

When are we Done Simulating?

When do you tape out?

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Aus

- Motorola criteria (EE Times, July 4, 2001)
- 40 billion random cycles without finding a bug
- Directed tests in verification plan are completed
- Source code and/or functional coverage goals are met

Lecture 17. Design Verit

- Diminishing bug rate is observed
- A certain date on the calendar is reached

Jacob Abraham, October 27, 2020 20 / 49

Jacob Abraham, October 27, 2020 21 / 49

Source: Wilson Research Group and Mentor, 2020 Functional Verification Study, https://go.mentor.com/5ffxz

ECE Department, University of Texas at Au

Jacob Abraham, October 27, 2020 22 / 49

Architecture Verification

Verify that the design matches the architectural specification

- Extensive testing the common approach
 - Conformance testing
- Approaches used in industry
 - Manually writing tests
 - Generating pseudo-random instruction sequences
 - Using biased pseudo-random instructions
 - Generating instruction sequences from typical workloads
 - Example: to verify an X86 clone, capture instruction trace on another X86 machine is running application

Jacob Abraham, October 27, 2020 24 / 49

Jacob Abraham, October 27, 2020 25 / 49

Example of Verifying Processors

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

Verifying PowerPC Processors

- Model based test generator
 - Expert system which contains a formal model of processor architecture, and a heuristic data base of testing knowledge
- Example, testing knowledge accumulated during the verification of the first PowerPC design included about 1,000 generation and validation functions (120,000 lines of C code)
- PowerPC behavioral simulator has about 40,000 lines of C++ code

Coverage-Driven Verification

Attempt to Verify that the Design Meets Verification Goals

- Define all the verification goals up front in terms of "functional coverage points"
 - Each bit of functionality required to be tested in the design is described in terms of events, values and combinations
- Functional coverage points are coded into the HVL (Hardware Verification Language) environment (e.g., Specman 'e')
 - Simulation runs can be measured for the coverage they accomplish
- Focus on tests that will accomplishing the coverage ("coverage driven testing")
 - Then fix bugs, release constraints, improve the test environment
 - Measurable metric for verification effort

Open Questions

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austi

Are There Better Measures of Coverage?

- Coverage of statements in RTL would be a necessary but not sufficient
- Coverage of all states is impractical even for a design with a few hundred state variables
- Is there a way to identify a subset of state variables that would be tractable, and would lead to better bug detection?
- How would these variables be related to the **behavior** of the design?

er 27, 2020 30 / 49

Jacob Abraham, October 27, 2020 31 / 49

ECE Department, University of Texas at Austin

Jacob Abraham, October 27, 2020 32 / 49

Commercial Tools	
Mentor Graphics	
	Statistication County County <th< td=""></th<>
Synopsys	Image P

Formal Verification Approaches

ECE Department, University of Texas at Austin

- Theorem Proving: Relationship between a specification and an implementation is regarded as a theorem in a logic, to be proved within the framework of a proof calculus
 - Used for verifying arithmetic circuits in industry
- Model Checking: The specification is in the form of a logic formula, the truth of which is determined with respect to a semantic model provided by an implementation
 - Starting to be used to check small modules in industry
- Equivalence Checking: The equivalence of a specification and an implementation checked

Jacob Abraham, October 27, 2020 35 / 49

- Most common industry use of formal verification
- Symbolic Trajectory Evaluation: Properties specified as assertions about circuit state (pre- and post- conditions), verified using symbolic simulation
 - Used to verify embedded memories in industry

18

Lecture 17. Design Verification

ECE Department, University of Texas at Austin

Jacob Abraham, October 27, 2020 36 / 49

Can a Boolean Function be Satisfied?

- Cast an equivalence checking problem as a SAT problem
- Starts by converting Boolean formula into the Conjunctive Normal Form (CNF) – (product of sums)

 $(a+b+c)(a+\overline{e}+f)(\overline{c}+\overline{d}+g)\dots$

- Goal is to find an assignment satisfying every term (if any clause is 0, there is no satisfying assignment)
- Commercial and Open SAT solvers available
- Most verification tools now use BDDs + SAT
- Some bring in ATPG ideas called "structural SAT"

Use of ATPG for Equivalence Checking

ECE Department, University of Texas at Au

- Use a tool (Automatic Test Pattern Generator) which generates manufacturing tests
- Detecting a "stuck-at-0" fault at Y (requires an input which generates a 1 on Y) will prove inequivalence of the two circuits
- Approach is not memory limited (like BDDs)

er 27, 2020 40 / 49

Design Verification

- Digital systems similar to reactive programs
- Digital systems receive inputs and produce outputs in a continuous interaction with their environment
- Behavior of digital systems is concurrent because each gate in the system simultaneously evaluating its output as a function of its inputs

Check Properties of Design

- Since specification is usually not formal, check design for properties that would be consistent with the specification
- Safety "something bad will never happen"
- Liveness Property: "something good will eventually happen"
- Temporal Logic and variations commonly used to specify properties
- Example: Linear Temporal Logic (LTL) or Computation Tree Logic (CTL)

Example of Computation Tree

ECE Department. University of Texas at Austin

27, 2020 42 / 49

Source: Wilson Research Group and Mentor, 2020 Functional Verification Study – https://go.mentor.com/5ffxz

ECE Department, University of Texas at a

b Abraham, October 27, 2020 46 / 49

Dramatic Example of Design Bug Detection and Recovery

ECE Department, University of Texas at Au

BAE RAD750 (133 MHz)

m, October 27, 2020 48 / 49

er 27, 2020 49 / 49

Science Lab on Mars

- Mars Science Laboratory MSL ("Curiosity") relies extensively on BAE RAD750 chip running at 133 MHz
- During cruise to Mars (circa January 2012), MSL processes are unexpectedly reset – no code bug is found (7 months remaining before landing)
- Misbehavior eventually traced to processor hardware malfunction: instruction flow depends on processor temperature
- Only possible fix was via software done successfully
 Lecture 17. Design Verification
 Jacob Abraham, C