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Power and Energy

Power is drawn from a voltage source attached to the Vpp pin(s)
of a chip
Instantaneous Power:

P(t) = iDD(t)VDD
Energy:
T T
E= / P(t)dt = / ipp(t)Vppdt
0 0
Average Power:

E 1

T
Pcw - s = T )
g T T/o ZDD(t)VDDdt

Energy stored in capacitor when it is charged from 0 to V,

Eo= /Ooo IOV (©)dt = /Ooo C%V(t)dt - C/OVC V($)dV = 120V2

The capacitor releases this energy when it discharges back to 0
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Example — CMOS Inverter Driving a Load Capacitance

VDD

@ When input switches from 1 to 0, pMOS transistor turns on
and charges the load to Vpp

o Energy stored in the capacitor is E, = 1/2CL V3,

o Energy delivered from the power supply is

e dV Voo
E, = / C—Vppdt = CVpp / dV = CV3p
0 0

Only half of the energy from the power supply is stored in
the capacitor

The other half is converted to heat (resistance of the pMOS
transistor)
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Sources of Power Dissipation

Dynamic Power Dissipation
o Charging and discharging of load capacitances

o "“Short-circuit” current while both p- and n-MOS networks are
partially on

Static Dissipation

@ Subthreshold leakage (through OFF transistors)

o Gate leakage through gate dielectric
@ Junction leakage from source/drain diffusion

@ Contention current in ratioed circuits
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Dynamic Power

@ Dynamic power is required to charge and discharge load
capacitances when transistors switch

@ One cycle involves a rising and falling output
@ On rising output, charge @ = CVpp is required
o On falling output, charge is dumped to GND
@ This repeats T fs, times over an interval of T
1 /T
denamic = T / Z.DD(t)‘/DDdt VDD
0
v g ipp(t)
— YDDb iDD(t)dt ¢DD
T Jo E
V
= % [TfswCVDD] m C
2 fSW $
=|CVppfsw
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Activity Factor

@ Suppose the system clock frequency = f
o Let fo, = af, where o = activity factor

If the signal is a clock, a =1

o If the signal switches once per cycle, o = 1/2

o Dynamic gates: switch either 0 or 2 times per cycle, a = 1/2
o Static gates: depends on design, but typically o = 0.1

@ Dynamic power: denamic = OzCVIZ)Df
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Computing Activity Factors

P;: probability that node i is 1 (1 — P; is probability that it is 0)
Activity factor of node i, «;, is the probability that the node is 0 in
one cycle and 1 in the next

If probability is uncorrelated from cycle to cycle, a; = P;P;
Example: 4-input AND gate

P=3/4

o0 mW>

P=3/4
0 =3/16

P s Po7ss

0=316 P= =

0.=316 o=7/64 P=18 P=15/16

0 =7/64 o=15/256 P=1/16
o =15/256
z

o0 w>

N7

Tools exist to calculate activity factors, either using
probabilities, or by monitoring nodes during simulation
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Activity Factor Example

Where there is reconvergent fanout, calculating probabilities
becomes more difficult

py =112
_ p1 =3/4
D? - oy =3/16
X2
- Py =3/32
: P5 =29/32
0;=8711024 B8 Lt
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Glitches Contribute to Power Consumption

Example, glitches in chain of gates and inverters implementing
4-input NAND gate
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Short Circuit (“Crowbar”) Current

@ When transistors switch, both nMOS and pMOS networks
may be momentarily ON at once

o Leads to a blip of “short circuit” current.
@ < 10% of dynamic power if rise/fall times are comparable for
input and output

———————————————— -- Vgp (Logic 1) ---

[0 11 ][ T R S

S e

signal . .
slews —» itﬁw'tchh':lig T ‘:sz
applied ithresholds s;-h:L e
to input ‘a’ -4~ -1 . S b
S Vs (Logic 0) —--

Source: EE Times, June 9, 2003

Power reduction depends on the sizes of the driving and driven
transistors and the input slew
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@ 200 million transistor chip

20M logic transistors, average width: 12\
180M memory transistors, average width 4\
1.2 V 100 nm process

Cy =2 fF/um

Estimate dynamic power
@ Static CMOS logic gates: activity factor = 0.1

@ Memory arrays: activity factor = 0.05 (many banks!)

o Estimate dynamic power consumption per MHz (neglect wire
capacitance)

Clogic = (20 x 10%)(12X)(0.05um/\) (2f F/um) = 24nF
Crnem = (180 x 10°)(4X)(0.05um/\)(2f F/um) = 72nF
Paynamic = [0.1C10gic + 0.05Cmem] (1.2)2f = 8.6mW/MH 2

[ECE Department, University of Texas at Austin
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Static Power

@ Static power is consumed even when chip is quiescent.

o Ratioed circuits burn power in fight between ON transistors
o Leakage draws power from nominally OFF devices

Vgs—Vi —Vis
Iy = Igs0e ™7 l—e-"r

Vi = Vio — Vs +7(Vbs + Vit = V)

n describes drain-induced barrier lowering (DIBL),

~ describes the body effect

For any appreciable V,, the term in brackets approaches unity
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Leakage Example: Estimate Static Power

@ Process has two threshold voltages and two oxide thicknesses
@ Subthreshold leakage:
e 20 nA/pum for low V;
e 0.02 nA/um for high V;
o Gate leakage:
e 3 nA/pm for thin oxide
e 0.002 nA/um for thick oxide
@ Memories use low-leakage transistors everywhere, and gates
use low-leakage transistors on 80% of logic
High leakage: (20 x 106)(0.2)(12X)(0.05um/)\) = 2.4 x 10%um
Low leakage:
(20 x 105)(0.8)(12X)(0.05um/A) + (180 x 105)(4X)(0.05um/N) =
45.6 x 10%um
Lstatic = (2.4 x 106um)[(20nA/um) /2 + (3nA/um)] + (45.6 x
10%m)[(0.02nA/um) /2 + (0.002nA/um)] = 32mA
Pstatic = IstaticVDp = 38 mW
If no low-leakage devices used, Psiatic = 749 mW
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Gloom and Doom Predictions of Increasing Power

Closer look at the power
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Source: Shekhar Borkar, Intel
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Power density will increase

10000

1000

Power Density (W/cm2)

Pentium® proc

1980 1990 2000 2010
Year

Power density too high to keep junctions at low temp
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Your car
1,000.00 starter !

100.00

10.00

lec (amp)
L(di/dt)/Vdd

0.01

1970 1980 1990 2000
Year

Source: Shekhar Borkar, Intel

ECE Department, University of Texas at Austin Lecture 18. Design for Low Power Jacob Abraham, October 29, 2020 15 / 47

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, October 29, 2020



VLSI Design, Fall 2020
18. Design for Low Power

Leakage Becoming A Major Component of Power

o Leakage component to i
active power becomes
significant % of total

..mi‘.“- i g

power
@ ~10% in 0.18um o s e e

technology ommmman s o e
@ Acceptable limit less .

than ~10%, implies i

serious challenge in V; L

scaling! M i 7

| e
Ay |M‘ 000 AXS W0 N0

Sources: S. Borkar, Intel; Chip Design Magazine
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Low Power Design

@ Reduce dynamic power
o «a: clock gating, sleep mode
o C: small transistors (especially on clock), short wires
o Vpp: lowest suitable voltage
o f: lowest suitable frequency
@ Reduce static power
o Selectively use ratioed circuits
o Selectively use low V; devices
o Leakage reduction: stacked devices, body bias, low
temperature

Use a combination of techniques at different levels

Algorithm
Architecture

Logic/circuit

Technology/circuit
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Architecture-Driven Voltage Scaling

A -~
[
T > Comparatar [—=
B
C
—
¥
T
1T

Data-path operator
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Architecture-Driven Voltage Scaling, Cont'd

A
T
T Comparator =
c
S
T
1T
8 | =z
T
-
o
12T Comparator [+

c
o
12T
2T

Parallel Implementation

Pyar = (2.150)(0.58V)2(0.5f) =~ 0.36 P
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Architecture-Driven Voltage Scaling, Cont'd

Comparator —=

| 5
=

]

]
o

Pipelined Implementation

Pyipe = (1.15C)(0.58V)?(f) ~ 0.39P
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Power Optimization Using Operation Reduction

B
X A
o
. ° B x B
(a) (b)

Reducing operations, while maintaining throughput
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Power Optimization Using Operation Reduction, Cont'd

Reducing operations, with lower throughput
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Precomputation-Based Optimization for Low Power

%1
A1
XML
A3 Z
Comb
%
i R2
*n : LE
f1
—m
—
L 42

Precomputation Architecture

f1:1:>Z:1; f2:1:>Z:0
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Precomputation-Based Optimization for Low Power,
Cont'd

Afn-1)
A1
Bin-1)
Aln-2) Campa@ior R3 £
Bin-2} Rz A-B
Ay |
B(O) LE

3

N-bit Comparator

fi=An—-1)-B(n—1); fa=An—-1)-B(n-1)
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Precomputation-Based Optimization for Low Power,
Cont'd

B | m2

|

| |
ST=R=1=

-] A3

) H

Adder-comparator circuit

fi=An—-1)-B(n—1)-C(n—1)-D(n—1)

fo=An—-1)-B(n—1)-C(n—1)-D(n—1)
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Stack Effect — Subthreshold Leakage

Stack effect reduces subthreshold leakage by a factor of ~ 10
Stacks with three or more OFF transistors have even lower leakage

Silicon-on-Insulator (SOI) circuits are attractive for low-leakage
designs

[ECE Department, University of Texas at Austin
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Gate Leakage

Affected by voltage across the gate

VX = O VX = VDD_Vt
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Example — Pattern Dependence of Gate and Subthreshold

Leakage

[ECE Department, University of Texas at Austin Lecture 18. Design for Low Power Jacob Abraham, October 29, 2020 28 / 47

Gate and Subthreshold Leakage in NAND3 (nA)

Input State (ABC) W late | hotal Vy Vv,
000 0.4 0 0.4 stack effect stack effect
001 0.7 0 0.7 stack effect Vop =V,
010 0 1.3 1.3 intermediate intermediate
011 3.8 0 | 10.1 Vop—V, Vop—V,
100 0.7 6.3 7.0 0 stack effect
101 3.8 6.3 | 10.1 0 Vop =V,
110 5.6 | 126 | 18.2 0 0
111 28 | 189 | 46.9 0 0
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Header Switch
vV Transistors
DD

Sleep— g~

lee
Vbpv P
— Power- : 9
B ooo| Gated L°°° <]
= Block )_ &

v Output
Isolation
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Controlling Threshold Voltages for Reduced Leakage

Multiple V4, Longer channels, Oxide thicknesses

o Low-V; on critical paths, High-V; on other paths for reduced
leakage

@ Longer transistors in the caches

@ Thicker oxides for |/O transistors

Body Bias

Vegp A
Voo Vean GND Voo

A v &5 U

pt n+ n+ p+ p+ n+
GND n-well

p-substrate
VBBn

Vesp

Substrate Tap Well Tap
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Voltage Domains for Low Power

VbbH

Clustered Voltage Scaling
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Dynamic Voltage Scaling (DVS)

Switching
Vin— \Voltage

»| Regulator
Voltage Control
lVDD
Freq Control
==
Workload
DVS 08 Core Logic

Controller
<Tem perature
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Energy Reduction from DVS
1 -
0.8 J/
> S
E) ’ :
o Three Levels, ;/ Arbitrary
w 0.6 1 Undithered / Supply
© N y
S 044  Fixed ./
£ Supply —7
o) / L4
2 ,
0.2 - ( Three Levels,
. % Dithered
///,
O — T T T T 1
0 0.2 04 0.6 0.8 1
Rate
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VAVAOL

@ Error-tolerant dynamic voltage scaling (DVS) technology
which eliminates the need for the voltage margins required for
“always correct” circuit operations design

o A different value in the shadow latch shows timing errors

@ Pipeline state is recovered after timing-error detection

o Error detection is done at the circuit level

o The design overhead is large if timing paths are well balanced
in the design

Logic stage p | DI Qi Logic stage
L1 L2

Error_L

Shadow DL
> Tt

LI Razor FF T Comparator
clk_delayed — 1

Error

Austin et al., 2003
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Direct Monitoring of Critical Path

Razor Flip-Flop (a) and Architecture using it (b)

@ Speculative operation requires an additional pipeline stage

@ Design may not be suitable for designs that have many critical
paths (increase in area and flip-flop power)
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Indirect Critical Path Monitor

TEAtime approach

CPR
f—— Error

CLK

@ Use of Critical Path Replicas (CPRs) to control voltage or
frequency until one of them fail

o CPRs (1-bit version of potential critical paths) are located
near potential critical paths to monitor them

o 1-bit detector may result in “oscillations”
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Adaptive Frequency Control with Critial Path Monitor

(Park, 2011)

Zzzl:ir;:‘ 'unenela\,
oK l 0 Grifcal Pt Replicas (CPR]—
CLK
" | Critical Path Monitor (CPM) I Yol
P[2:0] Delay of CPRs Frequency Control
{0.0.0} Fast T
{0.0.1} Appropriate _
{0.1.1} ] .- )
{111} Slow (Safety Margin) l
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Use of C-elements to Combine CPRs

_4 Wieak Imeenzr

=
i_l_
<

m =
=<

—|=lo|o|®

~|lo|=|o|w
|

CPR1

._l
._I CFRZ
_I

_| CPAE
Configuration of 8 CPRs
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Simulation Results

@ MIPS core implemented in 45nm process
o Optimized to meet target frequency of 1.5GHz
e Many critical paths
o Power results from HSPICE, PrimeTime and PrimeTimePX

A
\
Fo Siow ™
5 / / H
s i
H / g wp
L] b 7 ]
£ LW
= (\ 2
Il ® f
L S S S R S S
05 s 07 07 0s 09 0% v

08
Voltags (V)

B ) e Maximum improvement in
Energy-Delay product

o

Delay changes in critical paths and
CPMs
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Low-Power Annotations at the RT-Level (Viswanath, 2006)

@ Given a microprocessor design and an instruction
o ldentify the instruction-driven slice
o Shut off the rest of the circuitry
@ This might include
e Gating out parts of different blocks
o Gating out floating point units during integer ALU execution
o Turning off certain FSMs in different control blocks since exact
constraints on their inputs are available due to
instruction-driven slicing

OR1200-RTL Reduction in Power Dissipation

m1-Sliced
04-Sliced
m 10-Sliced

e azip parser vortex
SPECINT2000 Benchmarks
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Low Power by Design: StrongArm 110

Start with Alpha 21064: 200 MHz @ 3.45V, Power = 26 W

Vdd reduction: Power reduction = 5.3X =— 4.9W

Reduce functions: Power reduction = 3X = 1.6W

Scale process: Power reduction = 2X = 0.8W
Clock load: Power reduction = 1.3X — 0.6W
Clock rate: Power reduction = 1.25X =— 0.5W

Source: D. Dobberpuhl
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TransMeta Example

LongRun Technology Demonstration

MHz Voltage % Full Power
700 1.65 100%
400 1.4 41%
333 1.2 25%

Power = C x V2 x F = 400MHz/700MHz * 1.4V?/1.65V2 = 41%

+ Crusoe processor starts off at 700MHz

+ DVD movie requires between 333 and 400MHz
+ Power is reduced to 25 or 41% of full power

+ The result is extended DVD playtime

Source: Doug Laird
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TransMeta Example

LongRun Technology in Operation

Crusoe Processor
AC/DC Modes

+ Crusoe processor starts off at MHz  Voltags
700MHz ——. [700 165
- 4 667 1.65
+ Code Morphing software 633 160
detects user activity 600 1.60
+ The software dynamically 566 155
adjusts MHz and voltage to oy
the most efficient power level 166 150
433 1.45
400 1.40
366 1.35
333 1.30
300 1.25
266 1.20
v 233 1.15
— 200 1.10

Source: Doug Laird
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TransMeta Example

Dynamic Software Execution
(2nd Pass)

x86 Memory Translation Cache
Execute VLIW code for block #1

X386 code * code ffor bloc!

block #1 VLIW code ffor block #2

VLIW code for block #3

x86 code
block #2

Code Morphing software actions
x86 code + Translation already exists
block #3

+ Execute VLIW code immediately

Source: Doug Laird
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TransMeta Example

Processor Thermal Comparison

Pentium llI Crusoe Processor

Playing DVD Playing DVD
105.5°C 48.2°C
221.9°F 118.8°F

Source: Doug Laird
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Intel Atom Power Management Modes
CO HFM CO LFM c1/C2 C4 C6

Core Voltage 1 1 1
a1
Core Clock OFF OFF OFF
PLL JU I T OFF OFF
e 5 B M (]
Flushed Flushed OFF
e B B B m N
Partial Flush OFF

Wake-Up Time active active m

<1us <30 us <100 us
== 1 n

j— .. ———

ECE Department, University of Texas at Austin Lecture 18. Design for Low Power Jacob Abraham, October 29, 2020 47 / 47

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, October 29, 2020



