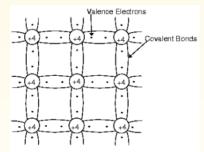
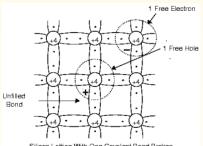
## 2. Transistors, Fabrication, Layout

#### Jacob Abraham

#### Department of Electrical and Computer Engineering The University of Texas at Austin


VLSI Design Fall 2020

September 1, 2020


## Conductivity in Silicon Lattice

#### Look at the behavior of crystalline silicon

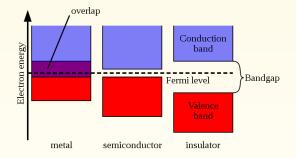
- At temperatures close to 0 K, electrons in outermost shell tightly bound (insulator)
- At higher temps., (300 K), some electrons have thermal energy to break covalent bonds







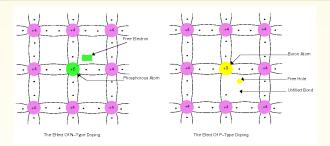
Silicon Lattice With One Covalent Bond Broken


## The Elements (Periodic Table)

| H <sup>3</sup><br>Li <sup>3</sup><br>Na | Be<br>12<br>Mg      |                    |                      |                 |                  |            | B <sup>5</sup><br>AI | C <sup>6</sup><br>14<br>Si | N<br>15<br>P | 0 <sup>8</sup><br>S <sup>16</sup> | 9<br>F<br>CI         | He<br>10<br>Ne<br>18<br>Ar |                  |           |                       |                       |                  |
|-----------------------------------------|---------------------|--------------------|----------------------|-----------------|------------------|------------|----------------------|----------------------------|--------------|-----------------------------------|----------------------|----------------------------|------------------|-----------|-----------------------|-----------------------|------------------|
| 19<br>K                                 | Ca <sup>20</sup>    | SC <sup>21</sup>   | Ti<br>Ti             | V <sup>23</sup> | Cr <sup>24</sup> | 25<br>Mn   | Fe <sup>26</sup>     | C0                         | 28<br>Ni     | Cu<br>Cu                          | Zn<br>Zn             | Ga <sup>31</sup>           | Ge <sup>32</sup> | As        | 34<br>Se              | 35<br>Br              | 36<br>Kr         |
| 37<br>Rb                                | 38<br>Sr            | <sup>39</sup><br>Y | <sup>40</sup><br>Zr  | 41<br>Nb        | 42<br>Mo         | 43<br>TC   | 44<br>Ru             | Rh                         | 46<br>Pd     | 47<br>Ag                          | Cd <sup>48</sup>     | 49<br>In                   | 50<br>Sn         | Sb        | Te <sup>52</sup>      | 53<br>                | Xe <sup>54</sup> |
| Cs                                      | Ba                  | 57<br>La           | 72<br>Hf             | 73<br>Ta        | W <sup>74</sup>  | 75<br>Re   | 76<br>Os             | 77<br>Ir                   | Pt           | <sup>79</sup><br>Au               | Hg                   | 81<br>Ti                   | Pb               | Bi<br>Bi  | 84<br>Po              | At 85                 | 86<br>Rn         |
| 87<br>Fr                                | <sup>88</sup><br>Ra | AC                 | Unq                  | Unp             | Unh              | 107<br>Uns | 108<br>Uno           | Une                        | Unn          |                                   |                      |                            |                  |           |                       |                       |                  |
|                                         |                     |                    | 58<br>Ce<br>90<br>Th | Pr              | 60<br>Nd         | Pm         | 62<br>Sm<br>94<br>Pu | Eu<br>95                   | Gd           | 65<br>Tb<br>97<br>Bk              | 66<br>Dy<br>98<br>Cf | 67<br>Ho<br>99<br>Es       | Er               | Tm<br>101 | 70<br>Yb<br>102<br>No | 71<br>Lu<br>103<br>Lr |                  |

## Build Systems with Information on Electrical Characteristics of Building Blocks (Transistors)

This course will not cover semiconductor physics

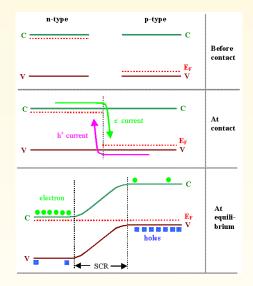

- Learn this from other courses in the department
- We will design VLSI circuits knowing the electrical behavior of the transistors



## Dopants

#### Used to selectively change the conductivity of silicon

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants **impurities** to pure silicon increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

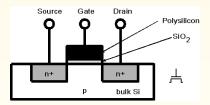



#### Diodes

- A junction between p-type and n-type semiconductor forms a diode
- Current flows only in one direction



## p-n Junction, Cont'd




Source: Prof. Dr. Helmut Föll, University of Kiel

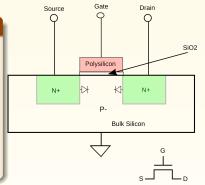
## nMOS Transistor

#### Four-Terminal device: gate, source, drain, body

- Gate oxide body stack looks like a capacitor
- Gate and body are conductors
- $SiO_2$  (oxide) is a very good insulator
- Called metal oxide semiconductor (MOS) capacitor, even though gate material changed to polysilicon
- Recent gate material in nanoscale processes is back to metal



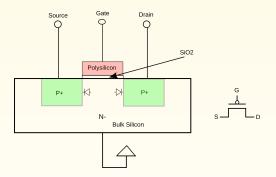
## nMOS Transistor Operation


Body (bulk) is commonly tied to Ground (0 V)

#### When the gate is at a low voltage

- P-type body is at low voltage
- Source-body and drain-body diodes are OFF
- No current flows, transistor is OFF

#### When the gate is at a high voltage


- Positive charge on gate of MOS capacitor
- Negative charge attracted to body
- Inverts a channel under gate to n-type
- Now electrons can flow through n-type silicon from source through channel to drain, transistor is ON

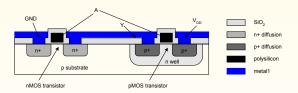


## pMOS Transistor

#### Similar to nMOS transistor, but doping and voltages reversed

- Body tied to high voltage (VDD)
- Gate low: transistor ON
- Gate high: transistor OFF
- Bubble indicates inverted behavior

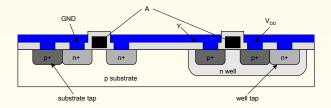



## **CMOS** Fabrication

#### Silicon technology

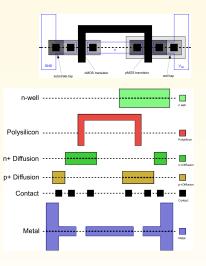
- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

#### Example inverter cross-section


- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors



## Well and Substrate Taps


#### Substrate contacts are critical to correct operation of CMOS

- Substrate must be tied to GND, n-well to VDD (reverse-biased diodes isolate regions)
- Metal to lightly-doped semiconductor forms poor connection called Schottky Diode – use heavily doped well and substrate contacts/taps



## Inverter Masks

- Transistors and wires are defined by masks
- Cross-sections shown above taken along dashed line



## **Examples of Fabrication Steps**

A VERY simplified description illustrating the major step – modern processes follow these basic steps, but are much more complex

- Start with blank wafer
- Build inverter from the bottom up

#### First step is to form the n-well

- Cover wafer with protective layer of  $SiO_2$  (oxide)
- Remove layer where n-well should be built
- Implant or diffuse n dopants into exposed wafer
- Strip off  $SiO_2$

p-substrate

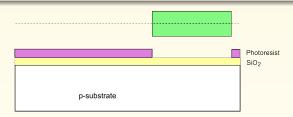
## Oxidation and Photoresist

#### Grow $SiO_2$ on top of Si wafer

•  $900 - 1200^{\circ}$ C with  $H_2O$  or  $O_2$  in oxidation furnace



#### Spin-on photoresist

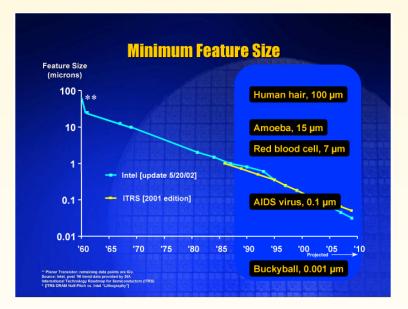

• Photoresist is a light-sensitive organic polymer which softens where exposed to light (positive resist)



## Lithography

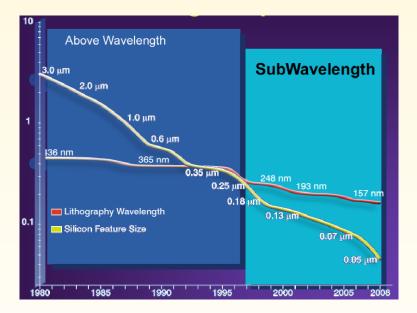
#### Use light to transfer a pattern to the wafer

- Expose photoresist through n-well mask (using UV light example 193 nm wavelength)
  - "Immersion lithography" used in some nanoscale processes
- Strip off exposed photoresist



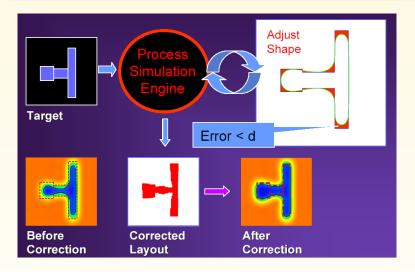

#### Interesting physics problem

- How can we "print" a 45 nm feature using light with a wavelength of 193 nm?
- Significant distortion of the image!


ECE Department, University of Texas at Austin

## Trend in Integrated Circuit Feature Sizes

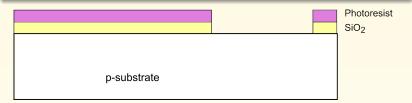



ECE Department, University of Texas at Austin

## Features Smaller than Wavelength of Light Used



## **Optical Proximity Correction (OPC)**


#### What you see is NOT what you get

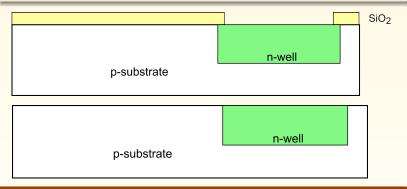


## Etch and Strip Photoresist

#### Etch oxide with Hydrofluoric acid (HF)

• Only attacks oxide where resist has been exposed




# Strip remaining photoresist using mixture of acids ("piranha" etch)Necessary so resist does not melt in the next step

|             | SiO <sub>2</sub> |
|-------------|------------------|
|             |                  |
| p-substrate |                  |
|             |                  |

## n-Well

#### Formed using ion implant (used to be diffusion)

- Bombard wafer with As ions, which only enter exposed Si
- (With diffusion, wafer is placed in a furnace with As gas)
- Remaining oxide is then stripped off using HF, and it is back to the bare wafer, but with an n-well



#### Subsequent steps repeat the above process

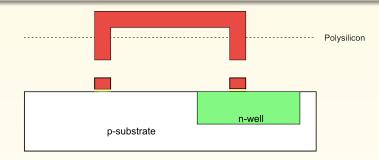
ECE Department, University of Texas at Austin

## Polysilicon (Modern Processes use Metal Gates)

#### Very thin layer of gate oxide is grown on wafer

- Gate oxide thickness is < 20Å (few atomic layers)
- One of the most critical steps in fabrication process

#### Polysilicon deposited on top of gate oxide

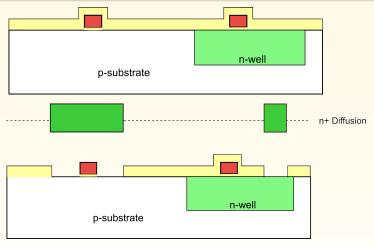

- Grown using Chemical vapor deposition (CVD)
- Wafer placed in furnace with Silane (SiH) gas
- Small crystals (polysilicon) formed on wafer
- Heavily doped to be a good conductor



## Polysilicon Patterning

Use same lithography processing to pattern polysilicon

- Reactive Ion Etch (RIE) process
- Charge buildup on un-etched polysilicon can lead to "antenna effects" and damage gate oxide

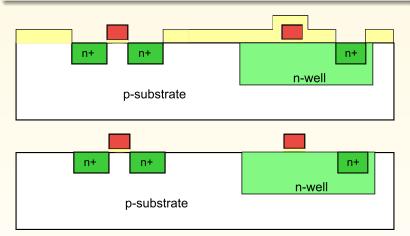



# Self-aligned process Polysilicon "blocks" dopants where the channel should be formed ECE Department, University of Texas at Austin Lecture 2, Transistors, Fabrication, Lavout Jacob Abraham, September 1, 2020 22

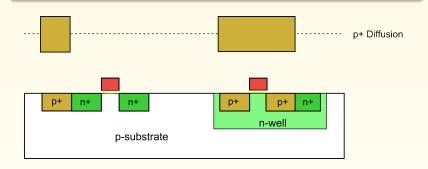
## N+ Diffusion

#### nMOS transistors are formed

- $\bullet$  Oxide is patterned to form the n+ regions
- N+ diffusion forms nMOS source, drain, and n-well contact



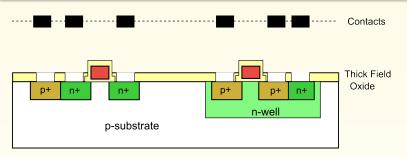

ECE Department, University of Texas at Austin


## N+ Diffusion, Cont'd

#### Ion implantation used to dope silicon

- n+ regions are formed
- Oxide is stripped off to complete patterning step

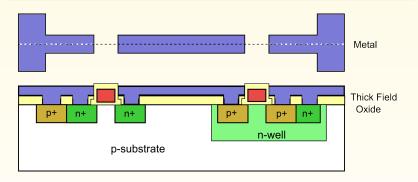



A similar set of steps is used to form the p+ diffusion regions for the pMOS transistor source and drain as well as the substrate contact



## Contacts

#### Points where the first level of metal contacts the transistors


- Used to wire the devices together
- Wafer is covered with thick field oxide
- Oxide is etched where the contact cuts are needed

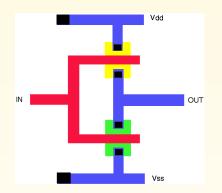


## Metallization

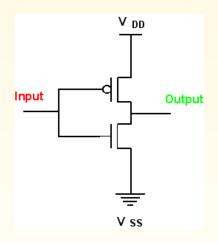
#### Used to interconnect internal nodes

- Aluminum was the traditional metal
  - Switch to Copper for high performance processes
- Aluminum is sputtered over the entire wafer
- Patterned to remove excess metal, leaving the wires



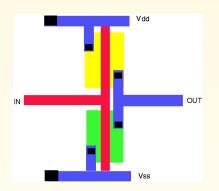

### Layout

- Describes actual layers and geometry on the silicon substrate to implement a function
- Need to define transistors, interconnection
  - Transistor widths (for performance)
  - Spacing, interconnect widths, to reduce defects, satisfy power requirements
  - Contacts (between poly or active and metal), and vias (between metal layers)
  - Wells and their contacts (to power or ground)
- Layout of lower-level cells constrained by higher-level requirements: **floorplanning** 
  - "design iteration"

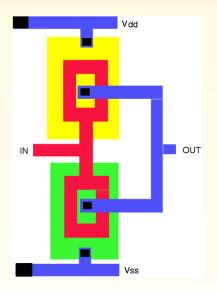

## Layout, Cont'd

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size f = distance between source and drain
  - Set by minimum width of polysilicon (= minimum "drawn" gate length)
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of  $\lambda = f/2$ 
  - e.g.,  $\lambda=$  0.3 $\mu m$  in 0.6 $\mu m$  process

## **CMOS** Inverter Layout

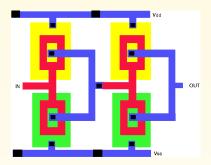



Note: the N- and P- well are not shown in the layout

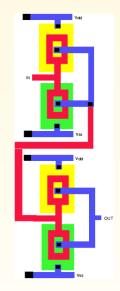



## Other CMOS Layouts

#### Using wide transistors

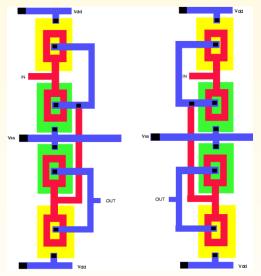



#### Using even wider transistors

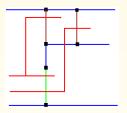



## Buffer with Two Inverters

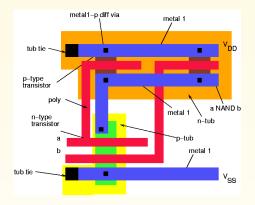
#### Side by side




#### Stacked




## Improving Layout Efficiency

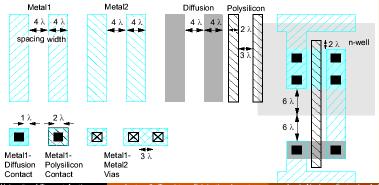

"Flip" a cell so that power (or ground) can be shared with another cell  $% \left( {{{\left[ {{{C_{{\rm{B}}}} \right]}} \right]_{{\rm{C}}}}} \right)$ 



Stick diagrams identify actual layers (which a schematic does not); both can be annotated with transistor sizes



#### n- and p-wells are shown




## Simplified Design Rules

Based on  $\lambda$  (popular in academia)

Discussed in the textbook

Rules based on  $\lambda$  can theoretically be migrated to a different technology (by changing the value of  $\lambda$ ); in practice, all the rules do not scale in the same way, and industry typically does not use  $\lambda$  rules



ECE Department, University of Texas at Austin

Lecture 2. Transistors, Fabrication, Layout

## Inverter Layout

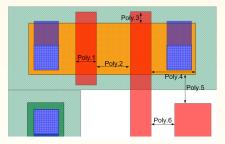
#### Dimensions of pMOS and nMOS transistors

- Dimensions specified as Width/Length  $\left(\frac{W}{L}\right)$ 
  - $\bullet\,$  Minimum size,  $4\lambda/2\lambda$  , sometimes called unit-size transistor
  - (pMOS transistors are typically designed to be about twice the width of nMOS transistors, because of the mobilities of holes and electrons)



## The MOSIS Scalable CMOS Rules

# MOSIS is a prototyping and small-volume production service for VLSI circuit development

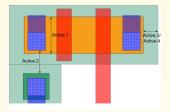

- MOSIS keeps costs down by combining many designs on a single die (multi-project chips)
  - Similar facilities exist in Europe (Europractice, CMP), Taiwan, etc.
- $\lambda$ -based rules
- Designs using these rules are fabricated by a variety of companies
- Support for submicron digital CMOS, analog (buried poly layer for capacitor), micromachines, etc.
- https://www.mosis.com/files/scmos/scmos.pdf

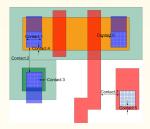
## Nangate 45nm Open Cell Library

#### Used in the laboratory exercises

- This is an open-source, standard-cell library
  - To aid university research programs and other organizations in developing design flows, designing circuits and exercising new algorithms
- Link to the wiki: http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
- Example: poly rules (note: summarized here)

| Rule | Value  | Description     |
|------|--------|-----------------|
| 1    | 50 nm  | Minimum width   |
| 2    | 140 nm | Minimum spacing |
| 3    | 55 nm  | Min. extension  |
| 4    | 70 nm  | Min. enclosure  |
| 5    | 50 nm  | Min. spacing    |
| 6    | 75 nm  | Min. spacing    |

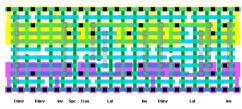




#### Active Rules

| Rule | Value | Description      |
|------|-------|------------------|
| 1    | 90 nm | Minimum width    |
| 2    | 80 nm | Minimum spacing  |
| 3    | -     | Min. well-active |
| 4    | -     | active inside    |

#### Contact Rules

| Rule    | Value | Description            |  |  |  |
|---------|-------|------------------------|--|--|--|
| 1 65 nm |       | Minimum width          |  |  |  |
| 2       | 75 nm | Minimum spacing        |  |  |  |
| 3       | -     | contact inside         |  |  |  |
| 4       | 5 nm  | Min. active around     |  |  |  |
| 5       | 5 nm  | Min. poly around       |  |  |  |
| 6       | 35 nm | Min. spacing with gate |  |  |  |
| 7       | 90 nm | Min. spacing with poly |  |  |  |

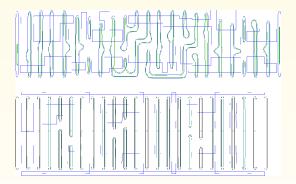





## Trend Towards Reducing Number of Rules

#### Improve manufacturability

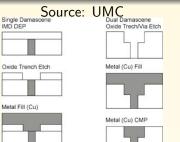
- Less flexibility for designers
- Intel reduced the number of poly layout rules for logic layout in 45nm by 37% compared with the 65 nm process
- Highly regular layout greatly reduces lithographic distortions
  - Limit rules, thereby limiting the number of allowed structures and shape relationships
  - Move towards 1-dimensional shapes and "Gridded Design Rules" (GDR)




#### Example layout from Tela Innovations

## Regular Layout

#### Lithography simulations

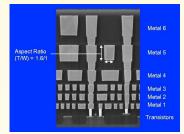

- Lithographic distortions reduced significantly with 1-D shapes and GDR
- Scan D Flip-Flop, 45nm process
- Source: Tela Innovations, Inc., ISPD 2009



#### 2D Conventional Layout

#### 1D GDR Layout

## Copper and the Damascene Process

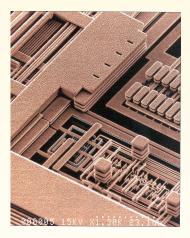


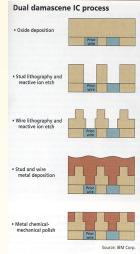

#### Metal (Cu) CMP

IMD DEP

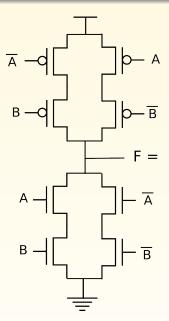
| · _  | _ | _ |
|------|---|---|
| - 11 |   |   |

## Layers of Damascene Copper (Intel)





#### Copper Damascene Interconnect (Intel)




## Advanced Metallization

IBM Technology (in Rabaey, Digital Integrated Circuits, 2nd ed.) First commercial Copper process  $(0.12\mu)$ 





## Example CMOS Circuit



ECE Department, University of Texas at Austin