Clock Distribution

- On a small chip, the clock distribution network is just a wire
 - And possibly an inverter for clkb
- On practical chips, the RC delay of the wire resistance and gate load is very long
 - Variations in this delay cause clock to get to different elements at different times
 - This is called clock skew
- Most chips use repeaters to buffer the clock and equalize the delay
 - Reduces but doesn’t eliminate skew
Example

- Skew comes from differences in gate and wire delay
 - With right buffer sizing, clk_1 and clk_2 could ideally arrive at the same time
 - But power supply noise changes buffer delays
 - clk_2 and clk_3 will always see RC skew

![Diagram showing clock signal paths with differences in delays and buffer sizes.]

Review: Skew Impact

- Ideally full cycle is available for work
- Skew adds sequencing overhead
- Increases hold time too

$$t_{pd} \leq T_c - (t_{setup} + t_{pcq} + T_{skew})$$

sequencing overhead

$$t_{cd} \geq t_{hold} - t_{coq} + t_{skew}$$
Skew Tolerance

- Flip-flops are sensitive to skew because of hard edges
 - Data launches at latest rising edge of clock
 - Must setup before earliest next rising edge of clock
 - Overhead would shrink if we can soften edge
- Latches tolerate moderate amounts of skew
 - Data can arrive any time latch is transparent

Skew: Latches

- **2-Phase Latches**
 \[
 t_{pd} \leq T_c - (2t_{pdq})
 \]
 sequencing overhead
 \[
 t_{cd1}, t_{cd2} \geq t_{hold} - t_{coq} - t_{nonoverlap} + t_{skew}
 \]
 \[
 t_{borrow} \leq T_c/2 - (t_{setup} + t_{nonoverlap} + t_{skew})
 \]

- **Pulsed Latches**
 \[
 t_{pd} \leq T_c - \max(t_{pdq}, t_{pcq} + t_{setup} - t_{pw} + t_{skew})
 \]
 sequencing overhead
 \[
 t_{cd} \geq t_{hold} + t_{pw} - t_{coq} + t_{skew}
 \]
 \[
 t_{borrow} \leq t_{pw} - (t_{setup} + t_{skew})
 \]
Dynamic Circuit Review

- Static circuits are slow because fat pMOS load input
- Dynamic gates use precharge to remove pMOS transistors from the inputs
 - Precharge: $\phi = 0$, output forced high
 - Evaluate: $\phi = 1$, output may pull low

Domino Circuits

- Dynamic inputs must monotonically rise during evaluation
- Place inverting stage between each dynamic gate
- Dynamic/static pair called domino gate
- Domino gates can be safely cascaded
Domino Timing

- Domino gates are 1.5 – 2x faster than static CMOS
 - Lower logical effort because of reduced C_{in}
- Challenge is to keep precharge off critical path
- Look at clocking schemes for precharge and evaluate
 - Traditional schemes have severe overhead
 - Skew-tolerant domino hides this overhead

Traditional Domino Circuits

- Hide precharge time by ping-ponging between half-cycles
 - One evaluates while other precharges
 - Latches hold results during precharge

$$t_{pd} = T_c - 2t_{pdq}$$
Clock Skew

- Skew increases sequencing overhead
- Traditional domino has hard edges
- Evaluate at latest rising edge
- Setup at latch by earliest falling edge

\[t_{pd} = T_c - 2t_{pdq} - 2t_{skew} \]

Time Borrowing

- Logic may not exactly fit half-cycle
 - No flexibility to borrow time to balance logic between half cycles
 - Traditional domino sequencing overhead is about 25% of cycle time in fast systems!
Relaxing the Timing

- Sequencing overhead caused by hard edges
 - Data departs dynamic gate on late rising edge
 - Must setup at latch on early falling edge
- Latch functions
 - Prevent glitches on inputs of domino gates
 - Holds results during precharge
- Is the latch really necessary?
 - No glitches if inputs come from other domino
 - Can we hold the results in another way?

Skew-Tolerant Domino

- Use overlapping clocks to eliminate latches at phase boundaries
 - Second phase evaluates using results of first
Full Keeper

- After second phase evaluates, first phase precharges
- Input to second phase falls
 - Violates monotonicity?
- But we no longer need the value
- Now the second gate has a floating output
 - Need full keeper to hold it either high or low

Time Borrowing

- Overlap can be used to
 - Tolerate clock skew
 - Permit time borrowing
- No sequencing overhead

\[t_{pd} = T_c \]
Multiple Phases

- With more clock phases, each phase overlaps more
- Permits more skew tolerance and time borrowing

Clock Generation

en clk

\[\phi_1 \]
\[\phi_2 \]
\[\phi_3 \]
\[\phi_4 \]
Opportunistic Time Borrowing

U. S. Patent no. 5517136 (Harris et al., May 14, 1996, assigned to Intel Corporation)
Pipelined domino logic allowing a slow stage to “borrow” from the time normally allocated to a faster stage.

Clocking of Time-Borrowing Pipeline

- Delayed falling edges on clocks allow evaluation to continue into subsequent half cycle.
 - Time delay t_d should be greater than or equal to the hold time of the domino logic gate plus any global clock skew.
- Can generate the clocks by a local reference driven by the chip’s global reference clock signal.
Example of an OTB Pipeline

Half-cycles 1 and 3 evaluate when CLK is high, half-cycle 2 when CLK is low

Another Look into Flip-Flops and Clocking Delays

Flip-flop delay versus data arrival time
Flip-Flop Setup and Hold Times – Different Data Values

Latch Delay Versus Data Arrival Time

Department of Electrical and Computer Engineering, The University of Texas at Austin
J. A. Abraham, November 10, 2020
Level-Converter Flip-Flops and Latches

Blue Elements use V_{DDL}

Metastability

Metastable state in static latch
Metastable Transients and Propagation Delay

![Graphs showing metastable transients and propagation delay](image)

Simple Synchronizer

![Diagram of a simple synchronizer](image)

Metastable Time
Asynchronous Systems – Communication

Handshake protocols

Wave Pipelining
Chip Densities increase with Scaling

- In 1965, Gordon Moore predicted the exponential growth of the number of transistors on an IC (Moore's Law)
- Transistor count doubled every year since invention
- Predicted > 65,000 transistors by 1975!
- Growth limited by power

Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
 - Transistors become cheaper, and faster
 - Wires do not improve (and may get worse)
- Scale factor S (typical technology nodes) $S = \sqrt{2}$
Scaling Assumptions

- What changes between technology nodes?
- Constant Field Scaling
 - All dimensions \((x, y, z \rightarrow W, L, t_{ox})\)
 - Voltage \(V_{DD}\)
 - Doping levels
- Lateral Scaling
 - Only gate length \(L\)
 - Often done as a quick gate shrink \((S = 1.05)\)

Device Scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensitivity</th>
<th>Constant Field</th>
<th>Lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (L)</td>
<td>1/S</td>
<td>1/S</td>
<td></td>
</tr>
<tr>
<td>Width (W)</td>
<td>1/S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gate oxide thickness (t_{ox})</td>
<td>1/S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Supply voltage (V_{DD})</td>
<td>1/S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Threshold voltage (V_{th})</td>
<td>1/S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Substrate doping (N_{S})</td>
<td>(S)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gates (\beta)</td>
<td>(\frac{W}{L} \frac{1}{t_{ox}})</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>Current (I_{d})</td>
<td>(\beta(V_{DD} - V_{th}))</td>
<td>1/S</td>
<td>(S)</td>
</tr>
<tr>
<td>Resistance (R)</td>
<td>(\frac{V_{DD}}{I_{d}})</td>
<td>1</td>
<td>1/S</td>
</tr>
<tr>
<td>Gate capacitance (C)</td>
<td>(\frac{W}{t_{ox}})</td>
<td>1/S</td>
<td>1/S</td>
</tr>
<tr>
<td>Gate delay (\tau)</td>
<td>(RC)</td>
<td>1/S</td>
<td>1/S</td>
</tr>
<tr>
<td>Clock frequency (f)</td>
<td>1/(\tau)</td>
<td>(S)</td>
<td>(8^f)</td>
</tr>
<tr>
<td>Dynamic power dissipation (per gate) (P)</td>
<td>(CP^f)</td>
<td>1/S</td>
<td>(S)</td>
</tr>
<tr>
<td>Chip area (A)</td>
<td>1/S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Power density (P/A)</td>
<td>(1)</td>
<td>(S)</td>
<td></td>
</tr>
<tr>
<td>Current density (I_{d}/A)</td>
<td>(S)</td>
<td>(S)</td>
<td></td>
</tr>
</tbody>
</table>
Observations
- Gate capacitance per micron is nearly independent of process
- But ON resistance \times micron improves with process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)
- Velocity saturation makes lateral scaling unsustainable

Solution
- Gate capacitance is typically about 2 fF/μm
- The FO4 inverter delay in the TT corner for a process of feature size f (in nm) is about 0.5f ps
- Estimate the ON resistance of a unit ($4/2\lambda$) transistor
- $\text{FO4} = 5 \tau = 15 \text{RC}$
- $\text{RC} = \frac{0.5f}{15} = \frac{f}{30} \text{ps/nm}$
- If $W = 2f$, $R = 8.33 \text{k}\Omega$

Unit resistance is roughly independent of f

Scaling Assumptions
- Wire thickness
 - Hold constant vs. reduce in thickness
- Wire length
 - Local/scaled interconnect
 - Global interconnect
 - Die size scaled by $D_c \approx 1.1$
Interconnect Scaling

Table 4.16 Influence of scaling on interconnect characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensitivity</th>
<th>Reduced Thickness</th>
<th>Constant Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width: w</td>
<td>$1/\mathit{S}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacing: s</td>
<td>$1/\mathit{S}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness: t</td>
<td>$1/\mathit{S}$</td>
<td>$1/\mathit{S}$</td>
<td>1</td>
</tr>
<tr>
<td>Interlayer oxide height: h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristics Per Unit Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire resistance per unit length: R_w</td>
<td>$1/\mathit{S}$</td>
<td>S'</td>
<td>S</td>
</tr>
<tr>
<td>Fringing capacitance per unit length: C_{fr}</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>Parallel plate capacitance per unit length: C_{pp}</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>Total wire capacitance per unit length: C_w</td>
<td>$C_{fr} + C_{pp}$</td>
<td>1</td>
<td>between 1, S</td>
</tr>
<tr>
<td>Unrepeated RC constant per unit length: r_w</td>
<td>R_wC_w</td>
<td>S'</td>
<td>between S, S'</td>
</tr>
<tr>
<td>Repeated wire RC delay per unit length: τ_w (assuming constant field scaling of gates in Table 4.15)</td>
<td>$\sqrt{R_wC_w}$</td>
<td>\sqrt{S}</td>
<td>between 1, \sqrt{S}</td>
</tr>
<tr>
<td>Crosstalk noise</td>
<td>1</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Interconnect Delay

Table 4.16 Influence of scaling on interconnect characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensitivity</th>
<th>Reduced Thickness</th>
<th>Constant Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width: w</td>
<td></td>
<td>$1/\mathit{S}$</td>
<td></td>
</tr>
<tr>
<td>Spacing: s</td>
<td></td>
<td>$1/\mathit{S}$</td>
<td></td>
</tr>
<tr>
<td>Thickness: t</td>
<td>$1/\mathit{S}$</td>
<td>$1/\mathit{S}$</td>
<td>1</td>
</tr>
<tr>
<td>Interlayer oxide height: h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local/Scaled Interconnect Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: l</td>
<td></td>
<td>$1/\mathit{S}$</td>
<td></td>
</tr>
<tr>
<td>Unrepeated wire RC delay</td>
<td>$r_{w,un}$</td>
<td>1</td>
<td>between $1/\mathit{S}$, 1</td>
</tr>
<tr>
<td>Repeated wire delay</td>
<td>$r_{w,rep}$</td>
<td>$\sqrt{1/\mathit{S}}$</td>
<td>between $1/\mathit{S}$, $\sqrt{1/\mathit{S}}$</td>
</tr>
<tr>
<td>Global Interconnect Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: l</td>
<td></td>
<td>$1/\mathit{S}$</td>
<td></td>
</tr>
<tr>
<td>Unrepeated wire RC delay</td>
<td>$r_{w,un}$</td>
<td>$S'D_{\mathit{i}}$</td>
<td>between SD_{i}^2, $S'D_{\mathit{i}}^2$</td>
</tr>
<tr>
<td>Repeated wire delay</td>
<td>$r_{w,rep}$</td>
<td>$D_{\mathit{i}}\sqrt{S}$</td>
<td>between D_{i}, $D_{\mathit{i}}\sqrt{S}$</td>
</tr>
</tbody>
</table>
Observations

- Capacitance per micron is remaining constant
 - About 0.2 fF/µm
 - Roughly 1/10 of gate capacitance
- Local wires are getting faster
 - Not quite tracking transistor improvement
 - But not a major problem
- Global wires are getting slower
 - No longer possible to cross chip in one cycle

Previously: International Technology Roadmap for Semiconductors (ITRS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature size (nm)</td>
<td>130</td>
<td>90</td>
<td>65</td>
<td>45</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>V_{dd} (V)</td>
<td>1.1–1.2</td>
<td>1–1.2</td>
<td>0.7–1.1</td>
<td>0.6–1.0</td>
<td>0.5–0.9</td>
<td>0.4–0.9</td>
</tr>
<tr>
<td>Millions of transistors/die</td>
<td>193</td>
<td>385</td>
<td>773</td>
<td>1564</td>
<td>3092</td>
<td>6184</td>
</tr>
<tr>
<td>Intermediate wire pitch (nm)</td>
<td>450</td>
<td>275</td>
<td>195</td>
<td>135</td>
<td>95</td>
<td>65</td>
</tr>
<tr>
<td>Interconnect dielectric constant</td>
<td>3–3.6</td>
<td>2.6–3.1</td>
<td>2.3–2.7</td>
<td>2.1</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>I/O signals</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1280</td>
<td>1408</td>
<td>1472</td>
</tr>
<tr>
<td>Clock rate (MHz)</td>
<td>1684</td>
<td>3990</td>
<td>6739</td>
<td>11511</td>
<td>19348</td>
<td>28751</td>
</tr>
<tr>
<td>FO4 delays/cycle</td>
<td>13.7</td>
<td>8.4</td>
<td>6.8</td>
<td>5.8</td>
<td>4.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Maximum power (W)</td>
<td>130</td>
<td>160</td>
<td>190</td>
<td>218</td>
<td>251</td>
<td>288</td>
</tr>
<tr>
<td>DRAM capacity (Gb/s)</td>
<td>0.5</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>
Now: International Roadmap for Devices and Systems

Technology Roadmaps
- Many steps needed to produce an IC
- Each step requires specialized (and expensive) equipment produced by different vendors
- Roadmaps give equipment manufacturers an idea what equipment would be used, and when the capability would be needed (example, scaling factor of $\sqrt{2}$)

ITRS established in 2013
- Scaling projections to 2028
- With Moore’s law coming to an end, the final roadmap was issued in 2016
- Through IEEE’s Rebooting Computing initiative, the IRDS was started

Some of the Focus Team Topics in the International Roadmap for Devices and Systems

- Application Benchmarking
- Systems and Architectures
- More Moore
- Beyond CMOS
- Packaging Integration
- Outside System Connectivity
- Factory Integration
- Lithography
- Metrology
- Emerging Research Materials
- Environment, Safety, Health, and Sustainability
- Yield Enhancement
- Cryogenic Electronics and Quantum Information
- Processing (added in 2018)
Scaling Implications

- Improved Performance
- Improved Cost
- Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits

Reachable Radius

- We can’t send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
 - Just as off-chip memory latencies were tolerated

Globally Asynchronous, Locally Synchronous (GALS)
VLSI Economics

- Selling price S_{total}
 \[S_{\text{total}} = C_{\text{total}}/(1 - m) \]
- \(m \) = profit margin
- \(C_{\text{total}} \) = total cost
 - Nonrecurring engineering cost (NRE)
 - Recurring cost
 - Fixed cost

NRE

- Engineering cost
 - Depends on size of design team
 - Include benefits, training, computers
 - CAD tools:
 - Digital front end: $10K
 - Analog front end: $100K
 - Digital back end: $1M
- Prototype manufacturing
 - Mask costs: $500K – 1M in 130 nm process
 - Test fixture and package tooling

Recurring and Fixed Costs

Recurring costs

- Fabrication
 - Wafer cost/(Dice per wafer × Yield)
 - Wafer cost: $500 - $3000
 - Dice per wafer:
 \[N = \pi \left[\frac{r^2}{A} - \frac{2r}{\sqrt{2A}} \right] \]
 - Yield: \(Y = e^{-AD} \)
 - For small \(A \), \(Y \approx 1 \), cost proportional to area
 - For large \(A \), \(Y \to 0 \), cost increases exponentially

- Packaging
- Test

Fixed costs

- Data sheets and application notes
- Marketing and advertising
- Yield analysis
Example

- You want to start a company to build a wireless communications chip. How much venture capital must you raise?
- Because you are smarter than everyone else, you can get away with a small team in just two years:
 - Seven digital designers
 - Three analog designers
 - Five support personnel

Solution

- Digital designers
 - $70k salary
 - $30k overhead
 - $10k computer
 - $10k CAD tools
 - Total: $120k \times 7 = $840k

- Analog designers
 - $100k salary
 - $30k overhead
 - $10k computer
 - $100k CAD tools
 - Total: $240k \times 3 = $720k

- Support staff
 - $45k salary
 - $20k overhead
 - $5k computer
 - Total: $70k \times 5 = $350k

- Fabrication
 - Back-end tools: $1M
 - Masks: $1M
 - Total: $2M/year

Summary:
- 2 years at $3.91M/year
- $8M design and prototype
Cost Breakdown

- New chip design is fairly capital-intensive
- Maybe you can do it for less?