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From (Physically) BIG Computers . ..

ENIAC
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...to Multicore Chips

ECE Department, University of Texas at Austin Lecture 23. Future Directions Jacob Abraham, November 19, 2020 2 / 42



Integrated Circuits are Everywhere

Orbits of GPS satellites
(source: http://www.eumetsat.int/)

Internet map
(source: Wikipedia)
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Embedded Systems

Myriad of Intelligent systems

o Cost, power consumption constraints

@ In critical applications, resiliency is very important

Example: self-driving cars

@ 100 Million lines of code for software, sensing and actuation

@ 64 TOPS for cognition and control functions

A\
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System-in-Package (SiP) vs. System-on-Chip (SoC)

Component provider

System integrator

design

l

‘ manufacturing ‘

|

test

SiP
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Developing a System-on-Chip

Application requirements

Software, hardware (function) partitions

Select processor cores
o ARM, MIPS, Tensilica, DSP

Memory and interfaces
o DRAM, SRAM, Flash, Rambus, etc.

@ System interfaces

o USB, PCIl, PCMCIA, Ethernet, 802.11, Firewire, Bluetooth,
etc.

Glue ASICs

(]
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Characteristics of Building Blocks

@ VLSI design involves the implementation of complex functions
using simple building blocks
o Logic building blocks
o Analog transfer characteristics
o Composition
@ We should be able to deal with other types of building
blocks
e For example, the theory developed for relay computers is
applicable to CMOS transistors

Hierarchically compose building blocks

@ Systems include hardware and software

Apple iPhone board
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Test and Verification are Still Problems

State-space explosion

@ Need to check a very large number of states to find a
system-level test or to uncover a bug

o Even combinational equivalence checking NP-complete

Problem: the number
of protons in the
universe is around
1089, which is less
than the number of
states for a system
with 300 storage

elementS! Hubble photo of Coma Cluster:

thousands of galaxies in a spherical shape 20 million light years across
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Application of Verification Engine: Finding “Implications”

in DNA Sequences
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Six different types of Boolean relationships between pairs of genes taken from
the Affymetrix U133 Plus 2.0 human dataset
The two axes correspond to the expression levels of two genes

Source: Sahoo et al., Genome Biology 2008
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Internet of Things (I0T)
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Serial Connectivity Trends
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Communications Technology

5G Expected Timeline

5G
Commercial
Deployment

5G
Standardization
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5G Product
Technology
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Source: cpqd.com
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Software Defined Networks (SDN)

Application
Layer
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Control
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Source: Citrix
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The World is not all Digital: System-on-Chip Market Size
($ Billions)
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Near-Infrared Light (NIR) and Cellular Pathways

growth factor production
extracellular matrix deposition

cel proliferation & motility
anti-apoptosis and pro-survival

near infrared light

signaling
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In-Vivo Transcranial Laser Stimulation

Laser Impact on the Brain

@ Monochromatic light in the near-infrared wavelengths
@ Modulates brain function

@ Produces neurotherapeutic effects in a non-destructive and
non-thermal manner

Mechanism of Low-Level Light Therapy (LLLT or 3LT

o Based on bioenegertics (fundamentally different from electric
or magnetic stimulation

@ LLLT modulates the function of neurons

@ Involves the absorption of photons by specific molecules in
neurons

o Part of the mitochondrial respiratory enzyme cytochrome
oxidase
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Effect of Stimulation on EEG Power Spectral Density

19 / 42




Second Generation FinFET (Tri-Gate) Transistors

22 nm 15t Generation 14 nm 2"d Generation
Tri-gate Transistor Tri-gate Transistor

Source: Intel
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Air Gaps in Low-K Dielectric Materials

L Im e

Intel /Micron 25nm NAND
Flash technology

Intel 22nm Transistor

Source: Intel/Micron
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Possible Future Transistors
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(a) FinFET (b) Nanowire (c) Nanosheet
Source: IBM
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Gate All Around (GAA) Transistors

MOSFET Transistor Manufacturing Type
Gate-all-
Drain (D) Planar  FinFET  around

Gate (G) si

Fin Stack of ‘Wrapped
lateral by gate
nanowires  from all sides

Source (S)

(STI: Shallow Trench Isolation)

Source: androidauthority.com
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Next Generation Manufacturing — Extreme Ultra-Violet

Lithography
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Source: Zeiss
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Projected Technology Nodes (TSMC)

2019/2020 20212022

Node
Fin No.
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W Dummy Gate Metal
. Tracks

N Active Gate
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64 45
Gate Im——— Metal
Metal Tracks ~ Pitch Pitch

TSMC plans on using FinFET transistors for its 3nm mode before
switching to GAAFET (gate all around) for 2nm chips (A.
Friedman, Oct. 2020)

Source (figure): M. Tyson, Hexus, June 13, 2019
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Resistive RAM — RRAM (Memristor
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Memristive systems

HP Labs non-linear devices in a row,
each a pair of oxide layers between the
single bottom wire and one of the top
wires
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Applications Which Will Require Bigger Computers

HPC Needs Decades of Moore's Law

Weather Prediction
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Climate Modeling Requirements

- ' % . .\

Detailed Focus

The resolution'of today's
Jclimate models s limited to

0ki s ormore=
ich,a8this degraded-
solutionsatellite image

Resolution: 200 km Resolution: 1.5 km
Source: Wehner et al., IEEE Spectrum, October 2009

H Processor ‘ Clock Speed ‘ GFlops/Core ‘ Cores | Power H
AMD Opteron | 2.8 GHz 5.6 1,700,000 | 179MW
Tensilica LX2 | 500MHz 1 10,000,000 | 3SMW
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Wafer-Scale Al Chip — Cerebras

Physical Dimensions: limited by 300 mm wafer

@ TSMC 7 nm technology
@ 1.2 Trillion transistors (redundancy to deal with defects)
@ 400,000 Al compute cores

@ As a comparison, Joule supercomputer has 84000 CPU cores,
and consumes 450 KW of power

@ Cerebras CS-1 uses 20 KW of power
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Carbon Nanotubes

Carbon nanotubes are around 1 nm in diameter
Much stronger than steel, flexible

Can possibly conduct 10? A/cm?
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Carbon Nanotube Transistor

Source: IBM
Self-assembly techniques (proposals include use of DNA)
Good success with liftoff techniques
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Implementing Robust Car

PROBLEM 1: Metallic tubes PROBLEM 2: Misaligned tubes

0 0 0 0

is always on.
o o © |Heatvaporizes
defective tube.

Transistors open oo 0o o
or close to switch
tubes on or off.

e @6 0 o

SOURCE: ford Electrical Engi ing 17 Science, Max Shulaker
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First Carbon Nanotube Computer

Max Shulaker et al, Nature, 2013
One instruction computer (SUBNEG — subtract and branch if
negative (Turing complete))
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Improving Computing Performance: Better Transistors?

System
integration

A

= Few experimental demos

= Transistors # system

Device
performance

Source: S. Mitra et al., Stanford University
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Improving Computing Performance: Architecture and
Design Tricks?

System
integration

A _Multi-cores

= Limited “tricks”

= Complexity - design bugs

Power
nagement

Device
performance

ECE Department, University of Texas at Austin Lecture 23. Future Directions Jacob Abraham, November 19, 2020 35 / 42



Improving Computing Performance: New Innovations

System
integration
y Multi-cores"
Target:
1,000X performance

New innovations required

Power
nagement

performance

Source: S. Mitra et al., Stanford University
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Nanosystems (Stanford Univ. N3XT Project)

Computation immersed in memory

Increased functionality

Fine-grained,
ultra-dense 3D

Impossible with today’s technologies

Source: S. Mitra et al., Stanford University
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N3XT Computation Immersed in Memory

3D Resistive RAM
Massive storage

1D CNFET, 2D FET
Compute, RAM access

STT MRAM
Quick access

Ultra-dense,
fine-grained

1D CNFET, 2D FET 7 vias
Compute, RAM access e B : =

1D CNFET, 2D FET — Silicon
Compute, Power, Clock . f compatible

thermal

Source: S. Mitra et al., Stanford Universit
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RISC-V Micprocessor (RV 16X-NANO) Built With

Complementary Carbon Nanotube Transistors

AR 333 Metallayer 5
(power distribution)
IMetaI via t

R )

m
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(n-CNFET S/D)
Metal layer 3
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intercell routing)
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(CNFET gate +
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{ Metalvia }
Metal layer 1
(signal routing)

CNFETs
—
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(a) Fabricated chip

(b) 3-D schematic of layout; CNFETS are physically located in the
middle of the stack, with metal routing both above and below
Source: G. Hills, Nature, 2019
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Are Things Really Changing Compared to the Past?

' Exponential Growth of Computing for 110 Years
Moore's Low was the Filth, not the First, Pasadigm 1o Bing
Exponanticl Growth in Computing
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Source: Kurzweil, updated by Jurvetson
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Are We Making Good Use of the Transistors We Have?

Look at the number of neurons (in the cerebral cortex for
mammals) in different species

Human Elephant
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Can’t We Make VLSI Chips Smarter?

Approximately 100 transistors to emulate a neuron
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