23. Future Directions

Jacob Abraham

Department of Electrical and Computer Engineering The University of Texas at Austin

VLSI Design Fall 2020

November 19, 2020

From (Physically) BIG Computers ...

ENIAC

... to Multicore Chips

ECE Department, University of Texas at Austin

Integrated Circuits are Everywhere

Orbits of GPS satellites
(source: http://www.eumetsat.int/)

Internet map (source: Wikipedia)

Myriad of Intelligent systems

- Cost, power consumption constraints
- In critical applications, resiliency is very important

Example: self-driving cars

- 100 Million lines of code for software, sensing and actuation
- 64 TOPS for cognition and control functions

Smart Homes

System-in-Package (SiP) vs. System-on-Chip (SoC)

ECE Department, University of Texas at Austin

Developing a System-on-Chip

- Application requirements
- Software, hardware (function) partitions
- Select processor cores
 - ARM, MIPS, Tensilica, DSP
- Memory and interfaces
 - DRAM, SRAM, Flash, Rambus, etc.
- System interfaces
 - USB, PCI, PCMCIA, Ethernet, 802.11, Firewire, Bluetooth, etc.
- Glue ASICs

Characteristics of Building Blocks

- VLSI design involves the implementation of complex functions using simple building blocks
 - Logic building blocks
 - Analog transfer characteristics
 - Composition
- We should be able to deal with other types of building blocks
 - For example, the theory developed for relay computers is applicable to CMOS transistors

Hierarchically compose building blocks

• Systems include hardware and software

Apple iPhone board

Test and Verification are Still Problems

State-space explosion

- Need to check a very large number of states to find a system-level test or to uncover a bug
- Even combinational equivalence checking NP-complete

Problem: the number of protons in the universe is around 10^{80} , which is less than the number of states for a system with 300 storage elements!

Hubble photo of Coma Cluster:

thousands of galaxies in a spherical shape 20 million light years across

Application of Verification Engine: Finding "Implications" in DNA Sequences

Six different types of Boolean relationships between pairs of genes taken from the Affymetrix U133 Plus 2.0 human dataset The two axes correspond to the expression levels of two genes

Source: Sahoo et al., Genome Biology 2008

Internet of Things (IOT)

Serial Connectivity Trends

Source: Xilinx

ECE Department, University of Texas at Austin

Communications Technology

5G Expected Timeline

Source: cpqd.com

Software Defined Networks (SDN)

Source: Citrix

ECE Department, University of Texas at Austin

The World is not all Digital: System-on-Chip Market Size (\$ Billions)

Thought Control

ECE Department, University of Texas at Austin

Near-Infrared Light (NIR) and Cellular Pathways

ECE Department, University of Texas at Austin

In-Vivo Transcranial Laser Stimulation

Laser Impact on the Brain

- Monochromatic light in the near-infrared wavelengths
- Modulates brain function
- Produces neurotherapeutic effects in a non-destructive and non-thermal manner

Mechanism of Low-Level Light Therapy (LLLT or 3LT

- Based on bioenegertics (fundamentally different from electric or magnetic stimulation
- LLLT modulates the function of neurons
- Involves the absorption of photons by specific molecules in neurons
- Part of the mitochondrial respiratory enzyme *cytochrome oxidase*

Effect of Stimulation on EEG Power Spectral Density

Normalized PSD (dB/Hz)

ECE Department, University of Texas at Austin

Second Generation FinFET (Tri-Gate) Transistors

22 nm 1st Generation Tri-gate Transistor

14 nm 2nd Generation Tri-gate Transistor

Source: Intel

Air Gaps in Low-K Dielectric Materials

Intel/Micron 25nm NAND Flash technology

Intel 22nm Transistor Source: Intel/Micron

Possible Future Transistors

Gate All Around (GAA) Transistors

(STI: Shallow Trench Isolation)

Source: androidauthority.com

Next Generation Manufacturing – Extreme Ultra-Violet Lithography

(NA: Numerical Aperture)

Source: Zeiss

ECE Department, University of Texas at Austin

ZEINS

Projected Technology Nodes (TSMC)

TSMC plans on using FinFET transistors for its 3nm mode before switching to GAAFET (gate all around) for 2nm chips (A. Friedman, Oct. 2020)

Source (figure): M. Tyson, Hexus, June 13, 2019

Resistive RAM – RRAM (Memristors)

Atomic force microscope images of 17 HP Labs non-linear devices in a row, each a pair of oxide layers between the single bottom wire and one of the top wires

Applications Which Will Require Bigger Computers

ECE Department, University of Texas at Austin

Climate Modeling Requirements

Resolution: 200 km Resolution: 1.5 km Source: Wehner et al., IEEE Spectrum, October 2009

Processor	Clock Speed	GFlops/Core	Cores	Power
AMD Opteron	2.8 GHz	5.6	1,700,000	179MW
Tensilica LX2	500MHz	1	10,000,000	3MW

ECE Department, University of Texas at Austin

Wafer-Scale AI Chip – Cerebras

Physical Dimensions: limited by 300 mm wafer

- TSMC 7 nm technology
- 1.2 Trillion transistors (redundancy to deal with defects)
- 400,000 AI compute cores
- As a comparison, Joule supercomputer has 84000 CPU cores, and consumes 450 KW of power
- Cerebras CS-1 uses 20 KW of power

Carbon Nanotubes

Carbon nanotubes are around 1 nm in diameter

Much stronger than steel, flexible

Can possibly conduct $10^9 \text{ A}/cm^2$

Carbon Nanotube Transistor

Source: IBM Self-assembly techniques (proposals include use of DNA) Good success with liftoff techniques

Implementing Robust Carbon Nanotube Structures

SOURCE: Stanford Electrical Engineering/Computer Science, Max Shulaker

First Carbon Nanotube Computer

Max Shulaker et al, Nature, 2013 One instruction computer (SUBNEG – subtract and branch if negative (Turing complete))

ECE Department, University of Texas at Austin

Improving Computing Performance: Better Transistors?

Source: S. Mitra et al., Stanford University

Improving Computing Performance: Architecture and Design Tricks?

Improving Computing Performance: New Innovations

Source: S. Mitra et al., Stanford University

Nanosystems (Stanford Univ. N3XT Project)

Source: S. Mitra et al., Stanford University

N3XT Computation Immersed in Memory

Source: S. Mitra et al., Stanford University

RISC-V Micprocessor (RV 16X-NANO) Built With Complementary Carbon Nanotube Transistors

(a) Fabricated chip(b) 3-D schematic of layout; CNFETs are physically located in the middle of the stack, with metal routing both above and belowSource: G. Hills, *Nature*, 2019

Are Things Really Changing Compared to the Past?

Source: Kurzweil, updated by Jurvetson

Are We Making Good Use of the Transistors We Have?

Look at the number of neurons (in the cerebral cortex for mammals) in different species

Can't We Make VLSI Chips Smarter?

