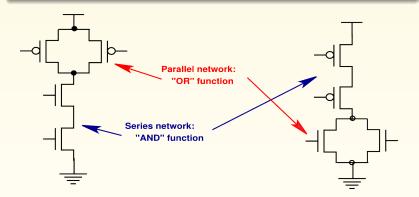
3. Implementing Logic in CMOS

Jacob Abraham

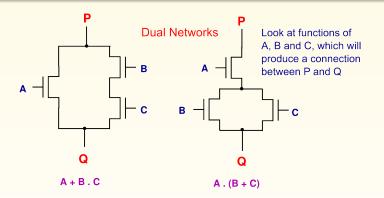
Department of Electrical and Computer Engineering The University of Texas at Austin


VLSI Design Fall 2020

September 3, 2020

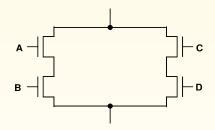
Static CMOS Circuits

N- and P-channel Networks


- N- and P-channel networks implement logic functions
 - Each network connected between **Output** and V_{DD} or V_{SS}
 - Function defines path between the terminals

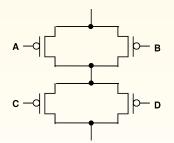
Duality in CMOS Networks

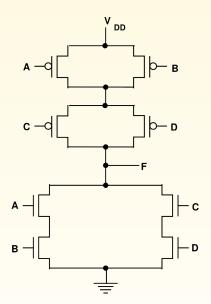
Straightforward way of constructing static CMOS circuits is to implement dual N- and P- networks


- N- and P- networks must implement complementary functions
- Duality sufficient for correct operation (but not necessary)

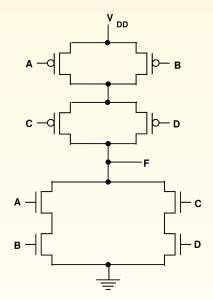
Constructing Complex Gates

Example: $F = \overline{(A \cdot B) + (C \cdot D)}$

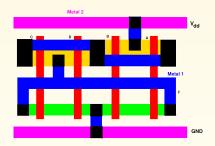

- **2** Identify AND, OR components: F is OR of AB, CD
- O Make connections of transistors



Construction of Complex Gates, Cont'd


G Construct P-network by taking complement of N-expression (AB + CD), which gives the expression, $(\overline{A} + \overline{B}) \cdot (\overline{C} + \overline{D})$

6 Combine P and N circuits

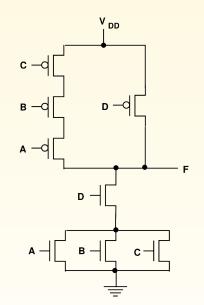


Layout of Complex Gate

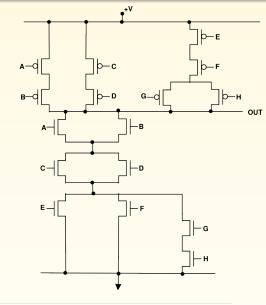
AND-OR-INVERT (AOI) gate

Note: Arbitrary shapes are not allowed in some nanoscale design rules

$$F = \overline{(A + B + C) \cdot D)}$$

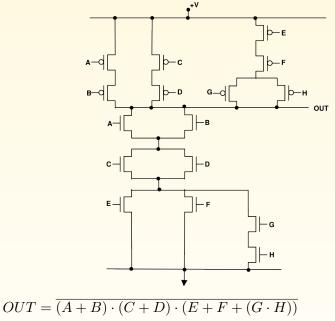

Note:

N- and P- graphs are duals of each other

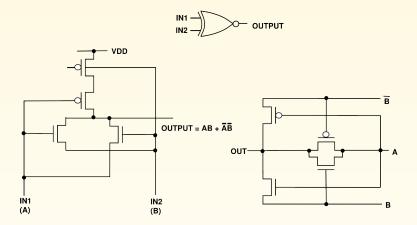

In this case, the function is the complement of the switching function between F and GND

Question: Does it make any difference to the function if the transistor with input D is connected between the parallel A, B, C, transistors and GND?

What about the electrical behavior?



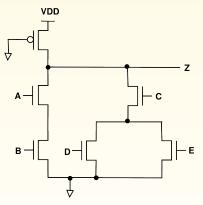
Example of More Complex Gate


$OUT = (A+B) \cdot (C+D) \cdot (E+F+(G \cdot H))$

Example of More Complex Gate

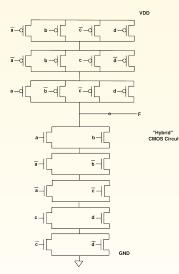
ECE Department, University of Texas at Austin

Exclusive-NOR Gate in CMOS


Note: designs such as these should be checked very carefully for correct behavior using circuit simulation

Pseudo nMOS Logic

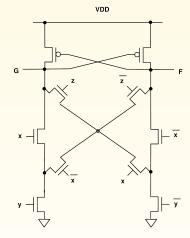
Based on the old NMOS technology where a "depletion" transistor was used as a pullup resistor


What happens when there is no path from Z to ground (i.e., Z = 1)?

What happens when there is a path from Z to ground (i.e., Z = 0)?

Duality is Not Necessary for a CMOS Structure

Functions realized by N and P networks must be **complementary**, and one of them must conduct for every input combination

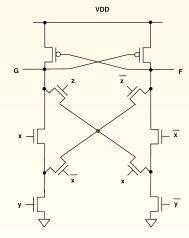


$$F = a \cdot b + \overline{a} \cdot \overline{b} + a \cdot c + c \cdot d + \overline{c} \cdot \overline{d}$$

The N and P networks are NOT duals, but the switching functions they implement are complementary

Example of Another Complex CMOS Gate

This circuit does not have a pMOS network – just one transistor for each function; it will work only if F and G are complements of each other. Why?

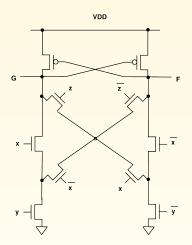

Can evaluate the voltages at F and G ($\{0, V_{DD}\}$) for each value of x, y, and z

 $F = x \cdot \overline{y} \cdot z + \overline{x} \cdot y \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$

 $G = \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{y} \cdot \overline{z}$

Example of Another Complex CMOS Gate

This circuit does not have a pMOS network – just one transistor for each function; it will work only if F and G are complements of each other. Why?



Can evaluate the voltages at F and G ($\{0, V_{DD}\}$) for each value of x, y, and z

$$F = x \cdot \overline{y} \cdot z + \overline{x} \cdot y \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$$

$$G = \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{y} \cdot \overline{z}$$

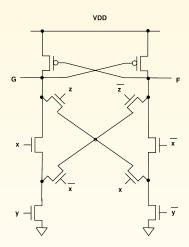
Example of Another Complex CMOS Gate, Cont'd

Can also follow every path from F and G to GND and identify values of x, y, and z which will enable the path to be enabled.

$$F = \overline{x} \cdot \overline{y} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z}$$

$$F = (x+y) \cdot (\overline{x} + y + z) \cdot (x + \overline{y} + z)$$

$$= (y+x \cdot z) \cdot (x + \overline{y} + z)$$


$$= x \cdot y + y \cdot z + x \cdot z$$

$$G = \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot \overline{y}$$

$$= \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z} + \overline{y} \cdot \overline{z}$$

Can you describe the functions in simple terms? (Hint: look at the number of input variables which are true (or false) when the output is 1.)

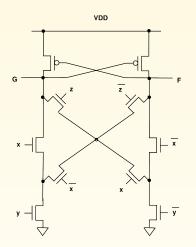
Example of Another Complex CMOS Gate, Cont'd

Can also follow every path from F and G to GND and identify values of x, y, and z which will enable the path to be enabled.

$$\overline{F} = \overline{x} \cdot \overline{y} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z}$$

$$F = (x + y) \cdot (\overline{x} + y + z) \cdot (x + \overline{y} + z)$$

$$= (y + x \cdot z) \cdot (x + \overline{y} + z)$$


$$= x \cdot y + y \cdot z + x \cdot z$$

$$G = \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot \overline{y}$$

$$= \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z} + \overline{y} \cdot \overline{z}$$

Can you describe the functions in simple terms? (Hint: look at the number of input variables which are true (or false) when the output is 1.)

Example of Another Complex CMOS Gate, Cont'd

Can also follow every path from F and G to GND and identify values of x, y, and z which will enable the path to be enabled.

$$\overline{F} = \overline{x} \cdot \overline{y} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z}$$

$$F = (x + y) \cdot (\overline{x} + y + z) \cdot (x + \overline{y} + z)$$

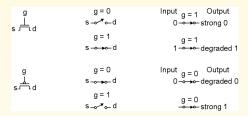
$$= (y + x \cdot z) \cdot (x + \overline{y} + z)$$

$$= x \cdot y + y \cdot z + x \cdot z$$

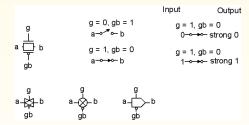
$$G = \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot \overline{y}$$

$$= \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z} + \overline{x} \cdot \overline{y}$$

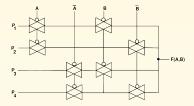
Can you describe the functions in simple terms? (Hint: look at the number of input variables which are true (or false) when the output is 1.)

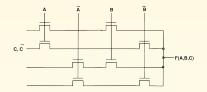

Voltages represent digital logic values

- Strength of signal:
 - How close it approximates ideal voltage
- $\bullet~V_{DD}$ and GND rails are strongest 1 and 0
- nMOS transistors pass a strong 0
 - But degraded or weak 1
- pMOS transistors pass a strong 1
 - But degraded or weak 0

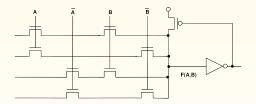

Therefore, nMOS transistors are best for the "pull-down" network

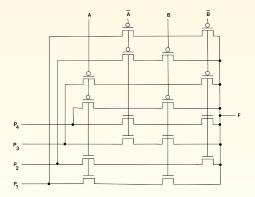
Pass Transistors and Transmission Gates


Transistors can be used as switches; however, they could produce degraded outputs



Transmission gates pass both 0 and 1 well

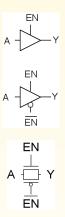

Pass Transistor Logic



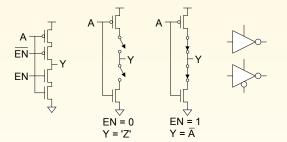
"Pull-Up" Circuit

Used to restore degraded logic 1 from output of nMOS pass transistor

Group similar transistors, so they can be in the same well

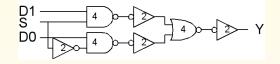


EN	А	Y
0	0	Ζ
0	1	Ζ
1	0	0
1	1	1

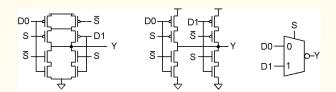

Tristate Buffer produces Z (high impedance) when not enabled

Non-Restoring Tristate

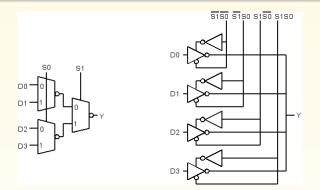
- Transmission gate acts as a tristate buffer
- Only two transistors, but nonrestoring
- Noise on A is passed to Y


Tristate inverter produces restored output, but complements signal

S	D1	D0	Y
0	Х	0	0
0	Х	1	1
1	0	Х	0
1	1	Х	1

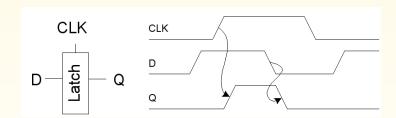

How many transistors are needed? (The better design uses 3 NAND gates and 1 inverter)

Transmission Gate MUX

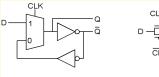

Inverting MUX – adds an inverter

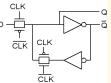
- Uses compound gate AOI22
- Alternatively, a pair of tristate inverters (same thing)

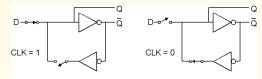
A 4:1 MUX chooses one of 4 inputs using two selects

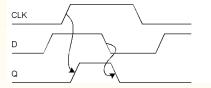

- Two levels of 2:1 MUXes
- Alternatively, four tristates

D Latch

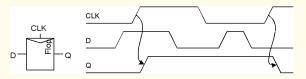

Basic Memory Element

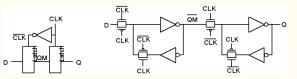

- When CLK = 1, latch is transparent
 - D flows through to Q like a buffer
- When CLK = 0, the latch is opaque
 - Q holds its old value independent of D
- a.k.a., transparent latch or level-sensitive latch


D Latch, Cont'd

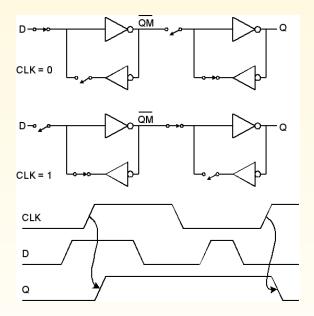

D Latch Design: MUX chooses between D and old Q

D Latch Operation

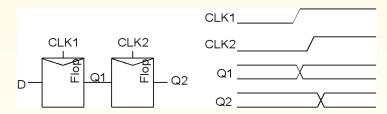




D Flip-Flop (D-Flop)

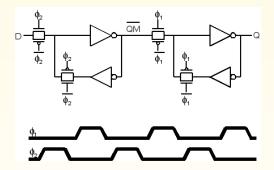

Another common storage element

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- positive edge-triggered flip-flop or master-slave flip-flop
- Built from "master" and "slave" D latches


D Flip-Flop Operation

Race Condition – Hold Time Failure

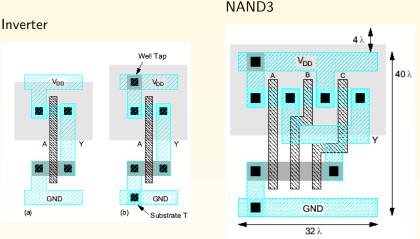
Back-to-back flops can malfunction from clock skew


- Second flip-flop fires late
- Sees first flip-flop change and captures its result
- Called hold-time failure or race condition

Non-Overlapping Clocks

A simple way to prevent races

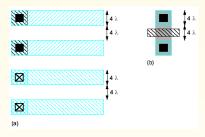
- This works as long as non-overlap exceeds clock skew
- Used in safe (conservative) designs
- Industry does not generally use this approach managing skew more carefully instead

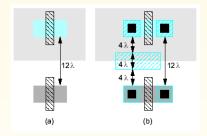

Building a library of standard cells

- Layout can be time consuming
- One solution is to have layouts of commonly used functions (Inverter, NAND, OR, MUX, etc.), designed to fit together very well

Standard cell design methodology

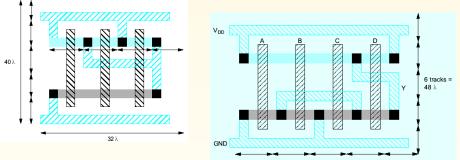
- V_{DD} and GND should abut (standard height)
- Adjacent gates should satisfy design rules
- nMOS at bottom and pMOS at top
- All gates include well and substrate contacts
- One of the large industry suppliers is ARM, others include TSMC and other foundries


Examples of Standard Cell Layout

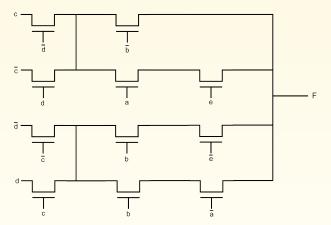

Horizontal N-diffusion and P-diffusion strips Vertical Polysilicon gates Metal1 V_{DD} rail at top, Metal1 GND rail at bottom 32λ by 40λ

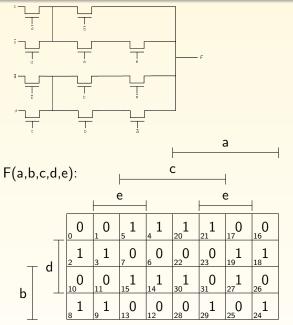
ECE Department, University of Texas at Austin

Wiring Track is the space required for a wire Example, 4λ width, 4λ spacing from neighbor = 8λ pitch Transistors also consume one wiring track

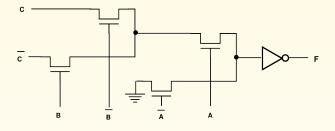


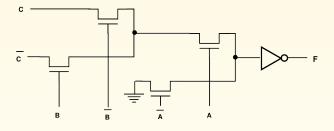
Example, well spacing: wells must surround transistors by 6λ Implies 12λ between opposite transistor flavors Leaves room for one wire track



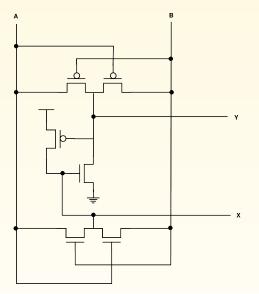

Estimate area by counting wiring tracks Multiply by 8 to express in λ

Estimating area of O3AI Sketch a stick diagram and estimate area

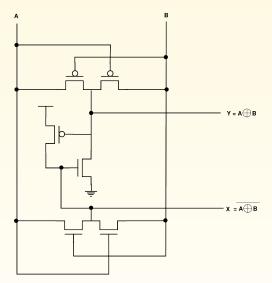

Fill in the Karnaugh map to represent the Boolean function implemented by the pass-transistor circuit.


ECE Department, University of Texas at Austin

Find the function, F, implemented by the following circuit

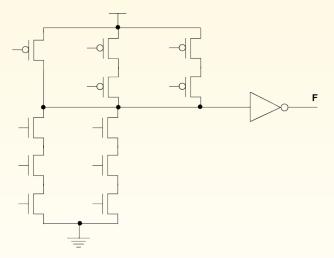

 $\overline{A} + BC + \overline{B} \ \overline{C}$

Find the function, F, implemented by the following circuit



 $\overline{A} + BC + \overline{B} \ \overline{C}$

Find the functions X and Y implemented by the following circuit



Find the functions X and Y implemented by the following circuit

Functions to Circuits

Label the circuit so that it implements the function: $F=a\cdot(b\cdot c+\bar{b}\cdot\bar{c})$

