5. CMOS Gate Characteristics

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

VLSI Design
Fall 2020

September 10, 2020
Topics

- DC Response
- Logic Levels and Noise Margins
- Transient Response
- Delay Estimation
Review – Delay of an Inverter

Inverter is driving another identical inverter; delay is the time when the input changes to when the output changes. Note that the second inverter is just serving as a load for the first.

Simplifying assumptions

- Resistance of a unit transistor = R
- Gate capacitance of a unit transistor = C
- Source/drain capacitance of a unit transistor = C
Inverter Delay Estimate, Cont’d

Estimate the delay of an inverter driving 4 identical inverters – Fanout-of-4 (FO4) delay
An important abstraction at higher levels of the design

\[d = 15RC \]
Behavior in different situations (increase, decrease, or not change).

1. If the width of a transistor increases, the current will
2. If the length of a transistor increases, the current will
3. If the supply voltage of a chip increases, the maximum transistor current will
4. If the width of a transistor increases, its gate capacitance will
5. If the length of a transistor increases, its gate capacitance will
6. If the supply voltage of a chip increases, the gate capacitance of each transistor will
Behavior in different situations (increase, decrease, or not change).

1. If the width of a transistor increases, the current will **increase**
2. If the length of a transistor increases, the current will **decrease**
3. If the supply voltage of a chip increases, the maximum transistor current will **increase**
4. If the width of a transistor increases, its gate capacitance will **increase**
5. If the length of a transistor increases, its gate capacitance will **increase**
6. If the supply voltage of a chip increases, the gate capacitance of each transistor will **not change**
Study the response of Inverters

- When $V_{in} = 0 \implies V_{out} = V_{DD}$
- When $V_{in} = V_{DD} \implies V_{out} = 0$
- In between, V_{out} depends on transistor size and current
- By KCL, current must be such that $I_{dsn} = |I_{dsp}|$
- We could solve equations, but graphical solution gives more insight
Transistor Operation

Current through transistor depends on the region of operation

- Need to identify for what V_{in} and V_{out} are nMOS and pMOS in Cutoff, Linear or Saturation

nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{in} < V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
<tr>
<td>$V_{out} < V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
</tr>
</tbody>
</table>

$V_{gsn} = V_{in}$

$V_{dsn} = V_{out}$
\[V_{gsp} = V_{in} - V_{DD} \]
\[V_{dsp} = V_{out} - V_{DD} \]
\[V_{tp} < 0 \]
Make pMOS wider than nMOS such that $\beta_n = \beta_p$

$$\beta = \mu C_{ox} \frac{W}{L}$$
Current vs. V_{out}, V_{in}

![Graph showing current vs. voltage for different input voltages V_{in0} to V_{in5}.

Key:
- I_{dsn}
- I_{dsp}

V_{out} vs. V_{DD}

Legend:
- V_{in0}
- V_{in1}
- V_{in2}
- V_{in3}
- V_{in4}
- V_{in5}

Lecture 5. CMOS Gate Characteristics
Jacob Abraham, September 10, 2020
Load Line Analysis

To find the V_{out} for a given V_{in}

- For a given V_{in}, plot I_{dsn}, I_{dsp} vs. V_{out}
- V_{out} must be where $|\text{currents}|$ are equal in the graph below
Transcribe points on to V_{in} vs. V_{out} plot
Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cutoff</td>
<td>Linear</td>
</tr>
<tr>
<td>B</td>
<td>Saturation</td>
<td>Linear</td>
</tr>
<tr>
<td>C</td>
<td>Saturation</td>
<td>Saturation</td>
</tr>
<tr>
<td>D</td>
<td>Linear</td>
<td>Saturation</td>
</tr>
<tr>
<td>E</td>
<td>Linear</td>
<td>Cutoff</td>
</tr>
</tbody>
</table>
If $\beta_p/\beta_n \neq 1$, switching point will move from $V_{DD}/2$

Called **skewed** gate

Analysis of more complex gates

- **Collapse into equivalent inverter**
How much noise can a gate input see before it does not recognize the input?
To maximize noise margins

- Select logic levels at unity gain point of DC transfer characteristic
- **DC analysis** gives the V_{out} if V_{in} is constant
- **Transient analysis** tells us V_{out} as V_{in} changes
- Input is usually considered to be a step or ramp (from 0 to V_{DD} or vice-versa)
Inverter Step Response

Find the step response of an inverter driving a load capacitance

- \(V_{in}(t) = u(t - t_0)V_{DD} \)
- \(V_{out}(t < t_0) = V_{DD} \)
- \(\frac{dV_{out}(t)}{dt} = - \frac{I_{dsn}(t)}{C_{load}} \)

\[I_{dsn}(t) = \begin{cases}
0 & t \leq t_0 \\
\frac{\beta}{2}(V_{DD} - V)^2 & V_{out} > V_{DD} - V_t \\
\beta \left(V_{DD} - V_t - \frac{V_{out}(t)}{2} \right) V_{out}(t) & V_{out} < V_{DD} - V_t
\end{cases} \]
Delay Definitions

- t_{pdr}: rising propagation delay
 - From input to rising output crossing $V_{DD}/2$
- t_{pdf}: falling propagation delay
 - From input to falling output crossing $V_{DD}/2$
- t_{pd}: average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- t_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- t_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}
- t_{cdr}: rising contamination delay
 - Minimum time from input to rising output crossing $V_{DD}/2$
- t_{cdf}: falling contamination delay
 - Minimum time from input to falling output crossing $V_{DD}/2$
- t_{cd}: average contamination delay
 - $t_{cd} = (t_{cdr} + t_{cdf})/2$
Simulated Inverter Delay

- Solving differential equations by hand too hard
- SPICE simulator solves equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write
Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask “what if ...”?

- The step response usually looks like a first order RC response with a decaying exponential

- Use RC delay models to estimate delay
 - \(C = \) total capacitance on output node
 - Use **effective resistance** \(R \)
 - So that \(t_{pd} = RC \)

- Characterize transistors by finding their effective \(R \)
 - Depends on average current as gate switches
Example: Sizing 3-Input NAND Gate for Equal Rise and Fall Times

Determine the transistor widths to achieve effective rise and fall resistances (times) equal to that of a unit inverter R

Annotate the 3-input NAND gate with gate and diffusion capacitances
Determine the transistor widths to achieve effective rise and fall resistances (times) equal to that of a unit inverter R

Annotate the 3-input NAND gate with gate and diffusion capacitances
Example: Sizing Complex Gate

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has $PW = 5$ and $NW = 3$. Use the smallest widths possible to achieve this ratio.

Note: if there are multiple paths through a transistor, use the size for the “worst-case” input combination.
Example: Sizing Complex Gate

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has $PW = 5$ and $NW = 3$. Use the smallest widths possible to achieve this ratio.

This solution does NOT use the smallest widths.

Note: if there are multiple paths through a transistor, use the size for the “worst-case” input combination.
Example: Sizing of Complex Gate – Better Solution

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has $PW = 5$ and $NW = 3$. Use the smallest widths possible to achieve this ratio.

Note: if there are multiple paths through a transistor, use the size for the “worst-case” input combination.
Elmore Delay

Finding the delay of ladder networks

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

\[t_{pd} = \sum_{nodes \ i} R_{i-to-source}C_i \]
\[= R_1C_1 + (R_1 + R_2)C_2 + \ldots + (R_1 + R_2 + \ldots + R_N)C_N \]

NOTE: \(C_i \) includes all the “off-path” capacitance on nodes that are connected to node \(i \)
Example: Elmore Delay Calculation

Delay from A to X:

Delay from A to Y:

Delay from A to Z:
Example: Elmore Delay Calculation, Cont’d

Delay from A to X: 40RC

Delay from A to Y: 38RC

Delay from A to Z: 35RC
Example: Delay of 2-Input NAND Using Elmore Formulation

Estimate **rising** and falling propagation delays of a 2-input NAND driving h identical gates

$$t_{pdr} = (6 + 4h)RC$$
Example: Delay of 2-Input NAND Using Elmore Formulation

Estimate rising and **falling** propagation delays of a 2-input NAND driving \(h \) identical gates

\[
t_{pdf} = \left(2C\right)\frac{R}{2} + \left[(6 + 4h)C\right]\left(\frac{R}{2} + \frac{R}{2}\right) = (7 + 4h)RC
\]
Example of Elmore Delay Calculation

Calculate the Elmore delay from C to F in the circuit. The widths of the pass transistors are shown, and the inverters have minimum-sized transistors.
Calculate the Elmore delay from C to F in the circuit. The widths of the pass transistors are shown, and the inverters have minimum-sized transistors.

\[
\text{Delay} = \frac{R}{3}9C + \frac{R}{3}5C + \left(\frac{R}{3} + \frac{R}{3}\right)7C + 3RC = 12.33RC
\]
Another Example: Elmore Delay Calculation

Use the Elmore delay approximation to find the worst-case rise and fall delays at output F for the following circuit. The gate sizes of the transistors are shown in the figure. Assume NO sharing of diffusion regions, and the worst-case conditions for the initial charge on a node.

- Input for worst-case rise delay =
- Worst-case rise delay =
- Input for worst-case fall delay =
- Worst-case fall delay =
Delay with Different Input Sequences

Find the delays for the given input transitions (gate sizes shown in figure)

Assumptions: diffusion capacitance is equal to the gate capacitance, the resistance of an nMOS transistor with unit width is R and the resistance of a pMOS transistor with width 2 is also R, and NO sharing of diffusion regions

Off-path capacitances can contribute to delay, and if a node does not need to be charged (or discharged), its capacitance can be ignored

$ABCD = 0101 \rightarrow ABCD = 1101$

$ABCD = 1111 \rightarrow ABCD = 0111$

$ABCD = 1010 \rightarrow ABCD = 1101$
Look at the charges on the nodes at the end of the first input of the sequence; only the capacitances of the nodes which would change with the second vector need to be considered.

\[ABCD = 0101 \rightarrow \]
\[ABCD = 1101; \]
Delay = 36RC

\[ABCD = 1111 \rightarrow \]
\[ABCD = 0111; \]
Delay = 16RC

\[ABCD = 1010 \rightarrow \]
\[ABCD = 1101; \]
Delay = 43RC
Delay has two parts

<table>
<thead>
<tr>
<th>Parasitic Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 or 7 RC</td>
</tr>
<tr>
<td>Independent of Load</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effort Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>4h RC</td>
</tr>
<tr>
<td>Proportional to load capacitance</td>
</tr>
</tbody>
</table>
Contamination Delay

Minimum (Contamination) Delay

- Best-case (contamination) delay can be substantially less than propagation delay
- Example, If both inputs fall simultaneously
- Important for “hold time” (will see later in the course)

\[t_{cdr} = (3 + 2h) RC \]
We assumed contacted diffusion on every source/drain
- Good layout minimizes diffusion area
- Example, NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

These general observations can be used for initial estimates of area
and performance – using tools to extract parasitics will provide
more accurate results for a particular technology