

Review – Delay of an Inverter

Inverter is driving another identical inverter; delay is the time when the input changes to when the output changes. Note that the second inverter is just serving as a load for the first.

Simplifying assumptions

- Resistance of a unit transistor = R
- Gate capacitance of a unit transistor = C
- Source/drain capaticance of a unit transistor = C

Inverter Delay Estimate, Cont'd

ber 10, 2020 2 / 39

Transistor Behavior

Behavior in different situations (increase, decrease, or not change).

- If the width of a transistor increases, the current will
- If the length of a transistor increases, the current will
- If the supply voltage of a chip increases, the maximum transistor current will
- If the width of a transistor increases, its gate capacitance will
- If the length of a transistor increases, its gate capacitance will
- If the supply voltage of a chip increases, the gate capacitance of each transistor will

Lecture 5. CMOS Gate Characteristics

Jacob Abraham, September 10, 2020 4 / 39

Jacob Abraham, September 10, 2020 5 / 39

Transistor Behavior

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

Behavior in different situations (increase, decrease, or not change).

- **1** If the width of a transistor increases, the current will **increase**
- If the length of a transistor increases, the current will decrease
- If the supply voltage of a chip increases, the maximum transistor current will increase
- If the width of a transistor increases, its gate capacitance will increase
- If the length of a transistor increases, its gate capacitance will increase
- If the supply voltage of a chip increases, the gate capacitance of each transistor will not change

Transistor Operation

ECE Department, University of Texas at Austi

Current through transistor depends on the region of operation

re 5. CMOS Gate C

• Need to identify for what V_{in} and V_{out} are nMOS and pMOS in Cutoff, Linear or Saturation

Cutoff	Linear	Saturated	
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$	
$V_{in} < V_{tn}$	$V_{in} > V_{tn}$	$V_{in} > V_{tn}$	
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$	
	$V_{out} < V_{in} - V_{tn}$	$V_{out} > V_{in} - V_{tn}$	
V_{qsr}	$v_n = V_{in}$	V _{DD}	
$V_{dsn} = V_{out}$			
		$V_{in} = \bigvee_{in} \bigvee_{in$	+
			i.

Jacob Abraham, September 10, 2020 7 / 39

pMOS Operation

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

re 5. CMOS Gate C

Jacob Abraham, September 10, 2020 8 / 39

I-V Characteristics

ECE Department, University of Texas at Austin

Load Line Analysis

Operating Regions

Revisit transistor operating regions

Region	nMOS	pMOS
А	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

ECE Department, University of Texas at Austin

Jacob Abraham, September 10, 2020 13 / 39

Noise Margins

Transient Response

- **DC** analysis gives the V_{out} if V_{in} is constant
- **Transient analysis** tells us V_{out} as V_{in} changes
- Input is usually considered to be a step or ramp (from 0 to V_{DD} or vice-versa)

Inverter Step Response

Find the step response of an inverter driving a load capacitance

Delay Definitions

- ${\, {\rm \bullet} \,}$ From input to rising output crossing $V_{DD}/2$
- t_{pdf} : falling propagation delay

• From input to falling output crossing $V_{DD}/2$

- t_{pd} : average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- t_r : rise time
 - From output crossing $0.2 V_{DD}$ to $0.8 V_{DD}$
- t_f : fall time
 - $\bullet~$ From output crossing $0.8~V_{DD}$ to $0.2~V_{DD}$
- t_{cdr} : rising contamination delay
 - Minimum time from input to rising output crossing $V_{DD}/2$
- t_{cdf}: falling contamination delay
 - Minimum time from input to falling output crossing $V_{DD}/2$
- t_{cd} : average contamination delay

• $t_{cd} = (t_{cdr} + t_{cdf})/2$ ECE Department, University of Texas at Austin

Jacob Abraham, September 10, 2020 19 / 39

Simulated Inverter Delay

- Solving differential equations by hand too hard
- SPICE simulator solves equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write

Delay Estimation

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "what if ..."?
- The step response usually looks like a first order RC response with a decaying exponential
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = \mathbf{RC}$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

ob Abraham, September 10, 2020 20 / 39

Jacob Abraham, September 10, 2020 21 / 39

Example: Sizing Complex Gate

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has PW = 5 and NW = 3. Use the smallest widths possible to achieve this ratio.

Note: if there are multiple paths through a transistor, use the size for the "worst-case" input combination.

Example: Sizing Complex Gate

ECE Department. University of Texas at A

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has PW = 5 and NW = 3. Use the smallest widths possible to achieve this ratio.

This solution does NOT use the smallest widths

Note: if there are multiple paths through a transistor, use the size for the "worst-case" input combination.

ECE Department, University of Texas at Austin

Example: Sizing of Complex Gate – Better Solution

Size the transistors in the circuit below so that it has the same drive strength, in the worst case, as an inverter that has PW = 5 and NW = 3. Use the smallest widths possible to achieve this ratio.

Note: if there are multiple paths through a transistor, use the size for the "worst-case" input combination.

ECE Department, University of Texas at A

<section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Delay from A to X: 40RC

Delay from A to Y: 38RC

Delay from A to Z: 35RC

ECE Department, University of Texas at Austin

Jacob Abraham, September 10, 2020 29 / 39

Example: Delay of 2-Input NAND Using Elmore Formulation

Estimate rising and **falling** propagation delays of a 2-input NAND driving h identical gates

Example of Elmore Delay Calculation

Calculate the Elmore delay from C to F in the circuit. The widths of the pass transistors are shown, and the inverters have minimum-sized transistors

Example of Elmore Delay Calculation

ECE Department, University of Texas at Aus

Calculate the Elmore delay from C to F in the circuit. The widths of the pass transistors are shown, and the inverters have minimum-sized transistors

e 5. CMOS Gate C

oer 10, 2020 32 / 39

Another Example: Elmore Delay Calculation

Use the Elmore delay approximation to find the *worst-case* rise and fall delays at output F for the following circuit. The gate sizes of the transistors are shown in the figure. Assume NO sharing of diffusion regions, and the worst-case conditions for the initial charge on a node.

Delay with Different Input Sequences

Find the delays for the given input transitions (gate sizes shown in figure)

Assumptions: diffusion capacitance is equal to the gate capacitance, the resistance of an nMOS transistor with unit width is R and the resistance of a pMOS transistor with width 2 is also R, and NO sharing of diffusion regions

Off-path capacitances can contribute to delay, and if a node does not need to be charged (or discharged), its capacitance can be ignored

$$ABCD = 0101 \rightarrow ABCD = 1101$$
$$ABCD = 1111 \rightarrow ABCD = 0111$$
$$ABCD = 1010 \rightarrow ABCD = 1101$$

ECE Department, University of Texas at Austin

Delay Components

Delay has two parts

- Parasitic Delay • 6 or 7 RC
 - Independent of Load

Effort Delay

4h RC

ECE Department, University of Texas at Austin

Proportional to load capacitance

Lecture 5. CMOS Gate Characteristics

Jacob Abraham, September 10, 2020 37 / 39

Contamination Delay

Minimum (Contamination) Delay

- Best-case (contamination) delay can be substantially less than propagation delay
- Example, If both inputs fall simultaneously
- Important for "hold time" (will see later in the course)

Diffusion Capacitance

- We assumed contacted diffusion on every source/drain
- Good layout minimizes diffusion area
- Example, NAND3 layout shares one diffusion contact
 Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

