## 6. Logical Effort

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

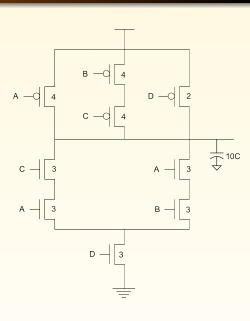
VLSI Design Fall 2020

September 15, 2020

### Review: See Additional Notes Posted

Calculate the Elmore delay from C to F in the circuit. The widths of the pass transistors are shown, and the inverters have minimum-sized

Use the Elmore delay approximation to find the *worst-case* rise and fall delays at output F for the following circuit. The gate sizes of the transistors are shown in the figure. Assume NO sharing of diffusion regions, and the worst-case conditions for the initial charge on a node.


## Example: Delay with Different Input Sequences

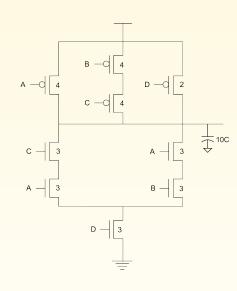
Find the delays for the given input transitions (gate sizes shown in figure)

Assumptions: diffusion capacitance is equal to the gate capacitance, the resistance of an nMOS transistor with unit width is R and the resistance of a pMOS transistor with width 2 is also R, and NO sharing of diffusion regions

Off-path capacitances can contribute to delay, and if a node does not need to be charged (or discharged), its capacitance can be ignored

$$ABCD = 0101 \rightarrow ABCD = 1101$$
  
 $ABCD = 1111 \rightarrow ABCD = 0111$   
 $ABCD = 1010 \rightarrow ABCD = 1101$ 




# Delay with Different Input Sequence, Cont'd

Look at the charges on the nodes at the end of the first input of the sequence; only the capacitances of the nodes which would change with the second vector need to be considered

$$ABCD = 0101 \rightarrow ABCD = 1101;$$
  
Delay = 36RC

$$ABCD = 1111 \rightarrow ABCD = 0111;$$
  
Delay = 16RC

$$ABCD = 1010 \rightarrow ABCD = 1101;$$
  
Delay = 43RC

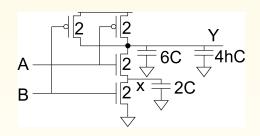


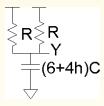
# Delay Components

Delay has two parts

#### Parasitic Delay

- 6 or 7 RC
- Independent of Load


#### Effort Delay


- 4h RC
- Proportional to load capacitance

## Contamination Delay

#### Minimum (Contamination) Delay

- Best-case (contamination) delay can be substantially less than propagation delay
- Example, If both inputs fall simultaneously
- Important for "hold time" (will see later in the course)





$$t_{cdr} = (3+2h)RC$$

## Introduction to Logical Effort

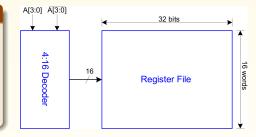
#### Chip designers have to face a bewildering array of choices

- What is the best circuit topology for a function?
- How many stages of logic give least delay?
- How wide should the transistors be?

#### Logical effort is one method to make these decisions

- Uses a simple model of delay
- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

## Example


Design the decoder for a register file

#### Decoder specifications

- 16 word register file
- Each word is 32 bits wide
- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors

#### Need to decide

- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?



### Delay in a Logic Gate

Express delay in a process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$au=3RC$$
  $pprox$  12 ps in 180 nm process 40 ps in 0.6  $\mu{\rm m}$  process

Delay has two components: d = f + p

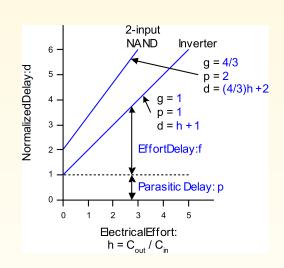
### Effort delay, f = gh (stage effort)

g: Logical Effort

Measures relative ability of gate to deliver current

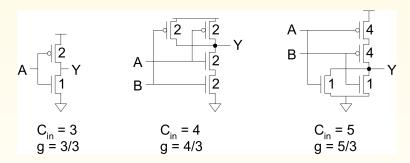
 ${\tt g} \equiv 1$  for inverter

**h:** Electrical Effort= $C_{out}/C_{in}$  Ratio of output to input capacitances, sometimes called fanout effort


#### Parasitic delay, p

- Represents delay of gate driving no load
- Set by internal parasitic capacitance

## Delay Plots


$$d = f + p$$
$$= gh + p$$

What about NOR2?



## Computing Logical Effort

- Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current
- Measure from delay vs. fanout plots
- Or, estimate by counting transistor widths



# Catalog of Gates

### Logical Effort of common gates

| Gate type    | Number of inputs |     |        |           |          |  |
|--------------|------------------|-----|--------|-----------|----------|--|
| Gate type    | 1                | 2   | 3      | 4         | n        |  |
| Inverter     | 1                |     |        |           |          |  |
| NAND         |                  | 4/3 | 5/3    | 6/3       | (n+2)/3  |  |
| NOR          |                  | 5/3 | 7/3    | 9/3       | (2n+1)/3 |  |
| Tristate/Mux | 2                | 2   | 2      | 2         | 2        |  |
| XOR, XNOR    |                  | 4,4 | 6,12,6 | 8,16,16,8 |          |  |

# Catalog of Gates

- Parasitic delay of common gates
  - In multiples of  $p_{inv} (\approx 1)$

| Gate type    | Number of inputs |   |   |   |    |
|--------------|------------------|---|---|---|----|
| Gate type    | 1                | 2 | 3 | 4 | n  |
| Inverter     | 1                |   |   |   |    |
| NAND         |                  | 2 | 3 | 4 | n  |
| NOR          |                  | 2 | 3 | 4 | n  |
| Tristate/Mux | 2                | 4 | 6 | 8 | 2n |
| XOR, XNOR    |                  | 4 | 6 | 8 |    |

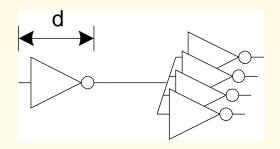
## **Example: Ring Oscillator**

#### Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay:  $\mathsf{p}=1$ 


Stage Delay: d = 2

Frequency:  $f_{osc} = 1/(2 \cdot N \cdot d) = 1/4N$ 

31 stage ring oscillator in 0.6  $\mu$ m process has frequency of  $\sim$  200 MHz

### Example: FO4 Inverter

#### Estimate the delay of a fanout-of-4 (FO4) inverter



Logical Effort: g=1Electrical Effort: h=4Parasitic Delay: p=1Stage Delay: d=5 The FO4 delay is about: 200 ps in a  $0.6\mu m$  process 60 ps in a 180 nm process f/3 ns in a f  $\mu m$  process (f/3 ps in a f nm process)

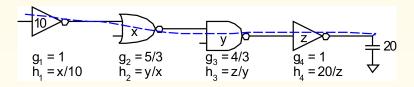
## Example Problem

A particular technology node has a FO4 delay of 9 ps. How many minimum size (2:1) inverters need to be included in a ring oscillator so that the frequency is close to 7.3 GHz?

$$\begin{aligned} & \text{FO4 delay} = 15RC = 9ps \\ & \text{Stage delay} = 6RC = 3.6ps \end{aligned}$$

$$f = \frac{1}{2 \times N \times d} \Longrightarrow$$

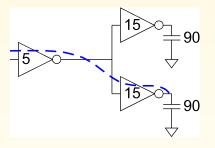
$$N = \frac{1}{2 \times f \times d}$$


$$= \frac{1}{2 \times 7.3 \times 3.6 \times 10^{-3}}$$

$$= 19.05$$

Number of inverters = 19

# Multistage Logic Networks


- Logical effort generalizes to multistage networks
- Path Logical Effort,  $G = \prod g_i$
- ullet Path Electrical Effort,  $H=\frac{C_{out-path}}{C_{in-path}}$
- Path Effort,  $F = \prod f_i = \prod g_i h_i$



• Can we write F = GH in general?

#### Consider Paths that Branch

$$\begin{array}{lll} \mathsf{G} &= 1 \\ \mathsf{H} &= 90 \ / \ 5 &= 18 \\ \mathsf{GH} &= 18 \\ \mathsf{h}1 &= (15 \ +15) \ / 5 = 6 \\ \mathsf{h}2 &= 90 \ / 15 &= 6 \\ \mathsf{F} &= g_1 g_2 h_1 h_2 &= 36 \ = 2 \mathsf{GH} \end{array}$$



# Branching Effort and Multistage Delays

#### Branching Effort accounts for branching between stages in path

$$b = \frac{C_{on\ path} + C_{off\ path}}{C_{on\ path}}$$

$$B = \prod b_i$$
 (Note:  $\prod h_i = BH$ )  
Now, path effort,  $F = GBH$ 

#### Multistage Delays

Path Effort Delay, 
$$D_F = \sum f_i$$

Path Parasitic Delay, 
$$P = \sum p_i$$

Path Delay, 
$$D = \sum d_i = D_F + P$$

# **Designing Fast Circuits**

$$D = \sum d_i = D_F + P$$

Delay is smallest when each stage bears same effort

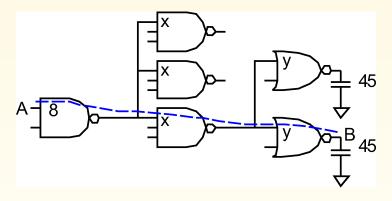
$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

Thus, the minimum delay of an N-stage path is

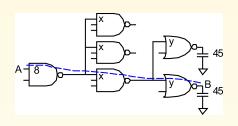
$$D = NF^{\frac{1}{N}} + P$$

- This is a key result of logical effort
  - Find fastest possible delay
  - Doesn't require calculating gate sizes

#### How wide should the gates be for the least delay?


$$\hat{f} = gh = g\frac{C_{out}}{C_{in}}$$

$$\implies C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

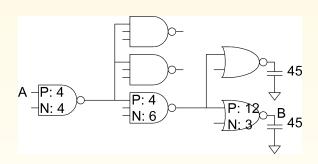

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives
- Check work by verifying input capacitance specification is met

### Example: 3-stage Path

Select gate sizes x and y for least delay from A to B



## Example: 3-stage Path, Cont'd

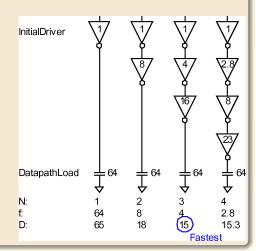



Logical Effort 
$$G=(4/3)^*(5/3)^*(5/3)=100/27$$
 Electrical Effort  $H=45/8$  Branching Effort  $B=3*2=6$  Path Effort  $F=GBH=125$  Best Stage Effort  $\hat{f}=\sqrt[3]{F}=5$  Parasitic Delay  $P=2+3+2=7$  Delay  $P=3*5+7=22=4.4$  FO4

## Example: 3-stage Path, Cont'd

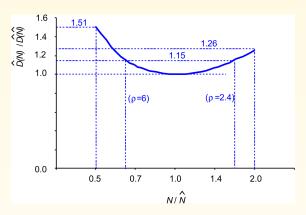
#### Work backward for sizes

$$y = 45 * (5/3) / 5 = 15$$
  
  $x = (15*2) * (5/3) / 5 = 10$ 




### Best Number of Stages

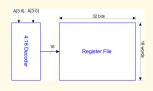
#### How many stages should a path use?


- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$\begin{aligned} D &= NF^{\frac{1}{N}} + P \\ D &= N(64)^{\frac{1}{N}} + N \end{aligned}$$



# Sensitivity Analysis


How sensitive is delay to using exactly the best number of stages?



- $2.4 < \rho < 6$  gives delay within 15% of optimal
  - We can be sloppy
  - For example, use  $\rho = 4$

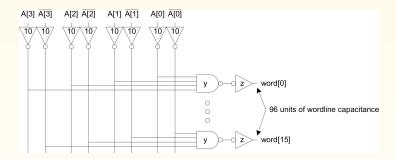
# Decoder Example: Number of Stages

- 16 word, (32 bit) register file
- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors



### Find: number of stages, sizes of gates, speed

- Decoder effort is mainly electrical and branching
  - Electrical Effort: H = (32\*3)/10 = 9.6
  - Branching Effort: B = 8
- If we neglect logical effort (assume G=1)
  - Path Effort: F = GBH = 76.8
- Number of Stages:  $N = log_4F = 3.1$
- Try a 3-stage design


### Decoder: Gate Sizes and Delay

Logical Effort: G = 1 \* 6/3 \* 1 = 2

Path Effort: F = GBH = 154 Stage Effort:  $\hat{f} = F^{\frac{1}{3}} = 5.36$ 

Path Delay:  $D = 3\hat{f} + 1 + 4 + 1 = 22.1$ 

Gate sizes: z = 96\*1/5.36 = 18Gate sizes: y = 18\*2/5.36 = 6.7



# Decoder: Comparison

### Compare many alternatives with a spreadsheet

| Design                  | N | G    | Р | D    |
|-------------------------|---|------|---|------|
| NAND4-INV               | 2 | 2    | 5 | 29.8 |
| NAND2-NOR2              | 2 | 20/9 | 4 | 30.1 |
| INV-NAND4-INV           | 3 | 2    | 6 | 22.1 |
| NAND4-INV-INV           | 4 | 2    | 7 | 21.1 |
| NAND2-NOR2-INV-INV      | 4 | 20/9 | 6 | 20.5 |
| NAND2-INV-NAND2-INV     | 4 | 16/9 | 6 | 19.7 |
| INV-NAND2-INV-NAND2-INV | 5 | 16/9 | 7 | 20.4 |
| NAND2-INV-NAND2-INV-INV | 6 | 16/9 | 8 | 21.6 |

### Review of Definitions

| Term              | Stage                                                | Path                                   |
|-------------------|------------------------------------------------------|----------------------------------------|
| Number of stages  | 1                                                    | N                                      |
| Logical effort    | g                                                    | $G = \prod g_i$                        |
| Electrical effort | $h = \frac{C_{out}}{C_{in}}$                         | $H = \frac{C_{out-path}}{C_{in-path}}$ |
| Branching effort  | $b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$ | $B = \prod b_i$                        |
| Effort            | f = gh                                               | F = GBH                                |
| Effort delay      | f                                                    | $D_F = \sum f_i$                       |
| Parasitic delay   | р                                                    | $P = \sum p_i$                         |
| Delay             | d = f + p                                            | $D = \sum d_i = D_F + P$               |

# Method of Logical Effort

1. Compute path effort

- F = GBH
- 2. Estimate best number of stages  $N = \log_4 F$

- 3. Sketch path with N stages
- 4. Estimate least delay
- 5. Determine best stage effort
- 6. Find gate sizes

$$D = NF^{\frac{1}{N}} + P$$

$$\hat{f} = F^{\frac{1}{N}}$$

$$\begin{array}{l} \hat{f} = F^{\frac{1}{N}} \\ C_{in} = \frac{g_i C_{out}}{f} \end{array}$$

### Limits of logical effort

- Chicken and egg problem
  - Need path to compute G
  - But, don't know number of stages without G
- Simplistic delay model, neglects input rise time effects
- Interconnect
  - Iteration required in designs with significant wires
- Maximum speed only
  - Not minimum area/power for constrained delay

# Summary of Logical Effort

#### Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- ullet Paths are fastest when effort delays are  $\sim$ 4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about log<sub>4</sub>F FO4 inverter delays
- Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits, but requires practice to master