1

6	Logical	Effort
υ.	LUgical	LIIUIL

Jacob Abraham

Department of Electrical and Computer Engineering The University of Texas at Austin

> VLSI Design Fall 2020

September 15, 2020

Lecture 6. Logical Effort

Jacob Abraham, September 15, 2020 1 / 31

Jacob Abraham, September 15, 2020 1 / 31

Review: See Additional Notes Posted

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

Calculate the Elmore delay from C to F in the circuit. The widths of the pass transistors are shown, and the inverters have minimum-sized

Use the Elmore delay approximation to find the *worst-case* rise and fall delays at output F for the following circuit. The gate sizes of the transistors are shown in the figure. Assume NO sharing of diffusion regions, and the worst-case conditions for the initial charge on a node.

Lecture 6. Logical Effort

Example: Delay with Different Input Sequences

Find the delays for the given input transitions (gate sizes shown in figure)

Assumptions: diffusion capacitance is equal to the gate capacitance, the resistance of an nMOS transistor with unit width is R and the resistance of a pMOS transistor with width 2 is also R, and NO sharing of diffusion regions

Off-path capacitances can contribute to delay, and if a node does not need to be charged (or discharged), its capacitance can be ignored

 $ABCD=0101 \rightarrow ABCD=1101$

 $ABCD = 1111 \rightarrow ABCD = 0111$

 $ABCD = 1010 \rightarrow ABCD = 1101$

ECE Department, University of Texas at Austin

Delay with Different Input Sequence, Cont'd Look at the charges on the nodes at the end of the first input of the sequence; only the capacitances of the nodes which would change with the second vector need to be considered $ABCD = 0101 \rightarrow$ ABCD = 1101;Delay = 36RC $ABCD = 1111 \rightarrow$ ABCD = 0111;Delay = 16RC $ABCD = 1010 \rightarrow$ ABCD = 1101;Delay = 43RCECE Department, University of Texas at Austin Jacob Abraham, September 15, 2020 3 / 31

Department of Electrical and Computer Engineering, The University of Texas at Austin J. A. Abraham, September 15, 2020

elay Components
Delay has two parts
Parasitic Delay
• 6 or 7 RC
• Independent of Load
Effort Delay
• 4h RC
Proportional to load capacitance

Contamination Delay

ECE Department, University of Texas at A

Minimum (Contamination) Delay

- Best-case (contamination) delay can be substantially less than propagation delay
- Example, If both inputs fall simultaneously
- Important for "hold time" (will see later in the course)

Introduction to Logical Effort

Chip designers have to face a bewildering array of choices

- What is the best circuit topology for a function?
- How many stages of logic give least delay?
- How wide should the transistors be?

Logical effort is one method to make these decisions

- Uses a simple model of delay
- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

Example

ECE Department, University of Texas at Austin

Design the decoder for a register file

Decoder specifications

- 16 word register file
- Each word is 32 bits wide
- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors

Need to decide

ECE Department, University of Texas at Austi

- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

m, September 15, 2020 6 / 31

Delay in a Logic Gate

ECE Department, University of Texas

Express delay in a process-independent unit $\tau = 3RC$

$$d = \frac{d_{abs}}{\tau}$$

pprox 12 ps in 180 nm process 40 ps in 0.6 μ m process

Delay has two components: d = f + p

• Set by internal parasitic capacitance

Computing Logical Effort

- Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current
- Measure from delay vs. fanout plots
- Or, estimate by counting transistor widths

Catalog of Gates

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Aust

• Logical Effort of common gates

Gate type	Number of inputs					
Gate type	1	2	3 4		n	
Inverter	1					
NAND		4/3	5/3	6/3	(n+2)/3	
NOR		5/3	7/3	9/3	(2n+1)/3	
Tristate/Mux	2	2	2	2	2	
XOR, XNOR		4,4	6,12,6	8,16,16,8		

oer 15, 2020 10 / 31

Jacob Abraham, September 15, 2020 11 / 31

Ca	Catalog of Gates						
	• Parasitic de • In multi	-				_	ces
	Gate type	Nı 1	ımb 2	er o 3	f inp 4	outs n]
l 	Inverter	1]
	NAND		2	3	4	n	-
	NOR		2	3	4	n	1
	Tristate/Mux	2	4	6	8	2n	
	XOR, XNOR		4	6	8		

Catalog of Gates

Example: Ring Oscillator

ECE Department, University of Texas at Aus

ECE Department, University of Texas at Austin

Estimate the frequency of an N-stage ring oscillator

Lecture 6. Logical Effort

Logical Effort: g = 1 Electrical Effort: h = 1 Parasitic Delay: p = 1 Stage Delay: d = 2 Frequency: $f_{osc} = 1/(2 \cdot N \cdot d) = 1/4N$

 $\begin{array}{l} \text{31 stage ring} \\ \text{oscillator in 0.6} \\ \mu\text{m process has} \\ \text{frequency of} \\ \sim 200 \text{ MHz} \end{array}$

Jacob Abraham, September 15, 2020 13 / 31

Jacob Abraham, September 15, 2020 12 / 31

Example Problem

A particular technology node has a FO4 delay of 9 ps. How many minimum size (2:1) inverters need to be included in a ring oscillator so that the frequency is close to 7.3 GHz?

FO4 delay = 15RC = 9psStage delay = 6RC = 3.6ps

$$f = \frac{1}{2 \times N \times d} \implies$$
$$N = \frac{1}{2 \times f \times d}$$
$$= \frac{1}{2 \times 7.3 \times 3.6 \times 10^{-3}}$$
$$= 19.05$$

Jacob Abraham, September 15, 2020 15 / 31

Number of inverters = 19

ECE Department, University of Texas at Austin

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort, $G = \prod g_i$
- Path Electrical Effort, $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort, $F = \prod f_i = \prod g_i h_i$

Jacob Abraham, September 15, 2020 16 / 31

• Can we write F = GH in general?

ECE Department, University of Texas at Aus

Branching Effort and Multistage Delays

Branching Effort accounts for branching between stages in path $b = \frac{C_{on \ path} + C_{off \ path}}{C_{on \ path}}$

> $B = \prod b_i \qquad (Note : \prod h_i = BH)$ Now, path effort, F = GBH

Multistage Delays

Path Effort Delay, $D_F = \sum f_i$ Path Parasitic Delay, $P = \sum p_i$ Path Delay, $D = \sum d_i = D_F + P$

Designing Fast Circuits

ECE Department, University of Tex

ECE Department, University of Texas at Austin

$$D = \sum d_i = D_F + P$$

Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

Thus, the minimum delay of an N-stage path is

$$D = NF^{\frac{1}{N}} + P$$

• This is a key result of logical effort

- Find fastest possible delay
- Doesn't require calculating gate sizes

15, 2020 18 / 31

Jacob Abraham, September 15, 2020 19 / 31

Example: 3-stage Path

ECE Department, University of Texas at A

Select gate sizes x and y for least delay from A to B

Jacob Abraham, September 15, 2020 20 / 31

Example: 3-stage Path, Cont'd

ECE Department, University of Texas at Au

Jacob Abraham, September 15, 2020 22 / 31

Sensitivity Analysis

A[3:0] A[3:0]

1:16 Decoder

Register File

Jacob Abraham, September 15, 2020 26 / 31

Decoder Example: Number of Stages

- 16 word, (32 bit) register file
- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors

Find: number of stages, sizes of gates, speed

- Decoder effort is mainly electrical and branching
 - Electrical Effort: H = (32*3)/10 = 9.6
 - Branching Effort: B = 8
- If we neglect logical effort (assume G = 1)
 Path Effort: F = GBH = 76.8
- Number of Stages: $N = \log_4 F = 3.1$
- Try a 3-stage design

ECE Department, University of Texas at Austin

Decoder: Gate Sizes and Delay

Logical Effort: G = 1 * 6/3 * 1 = 2Path Effort: F = GBH = 154Stage Effort: $\hat{f} = F^{\frac{1}{3}} = 5.36$ Path Delay: $D = 3\hat{f} + 1 + 4 + 1 = 22.1$ Gate sizes: z = 96*1/5.36 = 18Gate sizes: y = 18*2/5.36 = 6.7

Decoder: Comparison

Compare many alternatives with a spreadsheet

Design	Ν	G	Ρ	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

Lecture 6. Logical Effort

Jacob Abraham, September 15, 2020 28 / 31

Jacob Abraham, September 15, 2020 29 / 31

Review of Definitions

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

Term	Stage	Path
Number of stages	1	Ν
Logical effort	g	$G = \prod g_i$
Electrical effort	$h = \frac{C_{out}}{C_{in}}$	$H = \frac{C_{out-path}}{C_{in-path}}$
Branching effort	$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$	$B = \prod b_i$
Effort	f = gh	F = GBH
Effort delay	f	$D_F = \sum f_i$
Parasitic delay	р	$P = \sum p_i$
Delay	d = f + p	$D = \sum d_i = D_F + P$

Lecture 6. Logical Effort

Method of Logical Effort

- 1. Compute path effort F = GBH $N = \log_4 F$
- 2. Estimate best number of stages
- 3. Sketch path with N stages
- 4. Estimate least delay
- 5. Determine best stage effort
- 6. Find gate sizes

$$D = NF^{\frac{1}{N}} + P$$
$$\hat{f} = F^{\frac{1}{N}}$$
$$C_{in} = \frac{g_i C_{out}}{f}$$

Limits of logical effort

- Chicken and egg problem
 - Need path to compute G
 - But, don't know number of stages without G
- Simplistic delay model, neglects input rise time effects
- Interconnect

ECE Department, University of Te

ECE Department, University of Texas at Austin

- Iteration required in designs with significant wires
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary of Logical Effort

Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are \sim 4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about log₄F FO4 inverter delays
- Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits, but requires practice to master

oer 15, 2020 30 / 31

Jacob Abraham, September 15, 2020 31 / 31

Decoder: Comparison

Compare many alternatives with a spreadsheet

Design	Ν	G	Ρ	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

Lecture 6. Logical Effort

Jacob Abraham, September 17, 2019 29 / 32

Jacob Abraham, September 17, 2019 30 / 32

Review of Definitions

ECE Department, University of Texas at Austin

ECE Department, University of Texas at Austin

Term	Stage	Path
Number of stages	1	Ν
Logical effort	g	$G = \prod g_i$
Electrical effort	$h = \frac{C_{out}}{C_{in}}$	$H = \frac{C_{out-path}}{C_{in-path}}$
Branching effort	$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$	$B = \prod b_i$
Effort	f = gh	F = GBH
Effort delay	f	$D_F = \sum f_i$
Parasitic delay	р	$P = \sum p_i$
Delay	d = f + p	$D = \sum d_i = D_F + P$

Lecture 6. Logical Effort

Method of Logical Effort

- 1. Compute path effort F = GBH
- 2. Estimate best number of stages $N = \log_4 F$
- 3. Sketch path with N stages
- 4. Estimate least delay
- 5. Determine best stage effort
- 6. Find gate sizes

$$D = NF^{\frac{1}{N}} + P$$
$$\hat{f} = F^{\frac{1}{N}}$$
$$C_{in} = \frac{g_i C_{out}}{\epsilon}$$

b Abraham, September 17, 2019 31 / 32

Jacob Abraham, September 17, 2019 32 / 32

Limits of logical effort

- Chicken and egg problem
 - Need path to compute G
 - But, don't know number of stages without G
- Simplistic delay model, neglects input rise time effects
- Interconnect

ECE Department, University of Te

ECE Department, University of Texas at Austin

- Iteration required in designs with significant wires
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary of Logical Effort

Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ${\sim}4$
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about log₄F FO4 inverter delays
- Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits, but requires practice to master