7. Combinational Circuits

Jacob Abraham

Department of Electrical and Computer Engineering The University of Texas at Austin

VLSI Design Fall 2020

September 17, 2020

"IEEE UT created a Discord server to help all ECE students with group studying and collaboration. Each ECE course has a channel where you can communicate with other students in the class about coursework. The Discord can be also be used for discussion about other ECE-related topics, including interview preparation and registration advice. Use this link to join the Discord: https://discord.gg/7kWzKze (IEEE membership not required to join)."

Review: Logical Effort, Gates and Paths

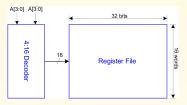
Term	Stage	Path
Number of stages	1	Ν
Logical effort	g	$G = \prod g_i$
Electrical effort	$h = \frac{C_{out}}{C_{in}}$	$H = \frac{C_{out-path}}{C_{in-path}}$
Branching effort	$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$	$B = \prod b_i$
Effort	f=gh	F=GBH
Effort delay	f	$D_F = \sum f_i$
Parasitic delay	р	$P = \sum p_i$
Delay	d = f + p	$D = \sum d_i = D_F + P$

Steps in Logical Effort

- 1. Compute path effort
- 2. Estimate best number of stages
- 3. Sketch path with N stages
- 4. Estimate least delay
- 5. Determine best stage effort
- 6. Find gate sizes

$$F = GBH$$

$$N = \log_4 R$$

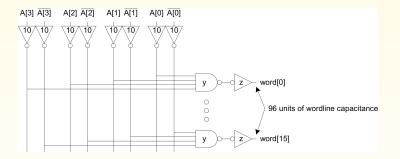

$$D = NF^{\frac{1}{N}} + F$$
$$\hat{f} = F^{\frac{1}{N}}$$
$$C_{in} = \frac{g_i C_{out}}{f}$$

Limits of logical effort

- Chicken and egg problem
 - Need path to compute G
 - But, don't know number of stages without G
- Simplistic delay model, neglects input rise time effects
- Interconnect
 - Iteration required in designs with significant wires
- Maximum speed only
 - Not minimum area/power for constrained delay

Review: Decoder Example, Number of Stages

- 16 word, (32 bit) register file
- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors

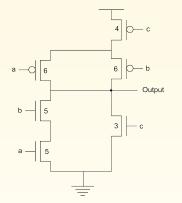


Find: number of stages, sizes of gates, speed

- Decoder effort is mainly electrical and branching
 - Electrical Effort: H = (32*3)/10 = 9.6
 - Branching Effort: B = 8
- If we neglect logical effort (assume G = 1)
 - Path Effort: F = GBH = 76.8
- Number of Stages: $N = log_4F = 3.1$
- Try a 3-stage design

Decoder Review: Gate Sizes and Delay

Logical Effort: G = 1 * 6/3 * 1 = 2Path Effort: F = GBH = 154Stage Effort: $\hat{f} = F^{\frac{1}{3}} = 5.36$ Path Delay: $D = 3\hat{f} + 1 + 4 + 1 = 22.1$ Gate sizes: z = 96*1/5.36 = 18Gate sizes: y = 18*2/5.36 = 6.7

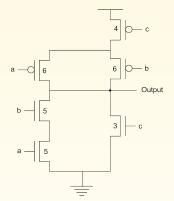


Compare many alternatives with a spreadsheet

Design	Ν	G	Ρ	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV		16/9	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	16/9	8	21.6

Review: Logical Effort Example

Find the logical efforts for the inputs, a, b, and c in the circuit below.


Output		
	Rising	Falling
а		
b		
с		

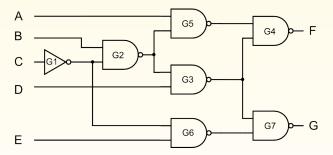
Output

Suggest a way to reduce the parasitic delay of this circuit by modifying the structure (but keeping the same function).

Example, Cont'd

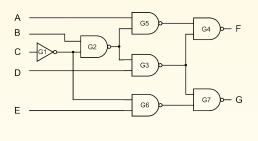
Find the logical efforts for the inputs, a, b, and c in the circuit below.

Output


	Rising	Falling
а	55/18	22/15
b	55/18	22/15
с	35/18	7/9

To reduce the parasitic delay of this circuit, swap the parallel combination of pMOS transistors with inputs a, b with the pMOS transistor with input c

Example: Sizing Paths

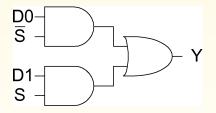

Size the path G1-G2-G3-G4 in the circuit below using logical effort Find the minimum delay and give the sizes of the P and N transistors to achieve this delay Assume that the off-path capacitance is the same as the on-path capacitance for each branch Input capacitance of Inverter G1 = 3 units.

Load capacitance driven by Gate G4 = 52 units.

Sizing Paths, Cont'd

Size the path G1-G2-G3-G4 in the circuit Input capacitance of Inverter G1 = 3 units. Load capacitance driven by Gate G4 = 52 units.

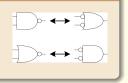
Delay = 4.8 FO4 units

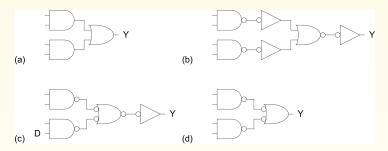

Sizes of transistors:

Gate	Р	Ν
Gate G4	8	8
Gate G3	5	5
Gate G2	3	3
Gate G1	2	1

Delay of the path from A through gates G5 and G4 (assuming the input from G2=1 and D=0): $\boxed{2.08}$ FO4 units

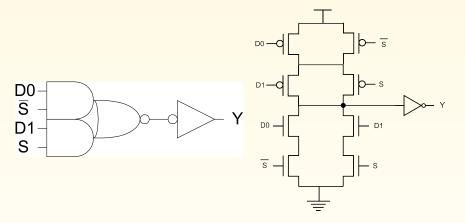
Implement the circuit described by the code below

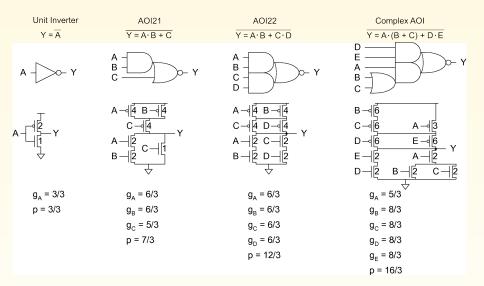

The specifications are easily met with a design using AND, OR and NOT gates



Convert to Design using NAND/NOR/NOT Gates

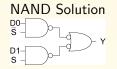
Bubble Pushing


Start with network of AND/OR gates Convert to NAND/NOR + inverters Push bubbles around to simplify logic Use DeMorgan's Law



Example, Continued

Now, design the circuit with one compound gate and one inverter. Assume that \bar{S} is available


Compound Gates

Another Example

A multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units

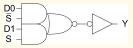
Estimate the delay of the NAND and compound gate designs

$$H = 160/16 = 10$$

$$B = 1$$

$$N = 2$$

$$P = 2 + 2 = 4$$


$$G = (4/3) \cdot (4/3) = 16/9$$

$$F = GBH = 160/9$$

$$\hat{f} = \sqrt[N]{F} = 4.2$$

$$D = N\hat{f} + P = 12.4\tau$$

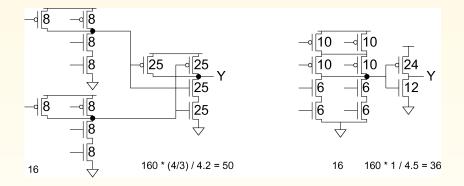
Compound Solution

$$H = 160/16 = 10$$

$$B = 1$$

$$N = 2$$

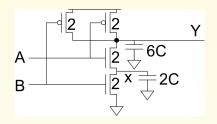
$$P = 4 + 1 = 5$$


$$G = (6/3) \cdot (1) = 2$$

$$F = GBH = 20$$

$$\hat{f} = \sqrt[n]{F} = 4.5$$

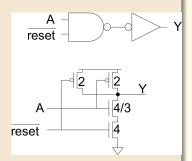
$$D = N\hat{f} + P = 14\tau$$


Annotate the designs for the multiplexer with transistor sizes which achieve the minimum delay

Order of Inputs to a Transistor Stack

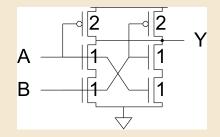
Delay of CMOS gate is affected by input order

- Parasitic delay model used in logical effort calculations is too simple
- Example, calculate parasitic delay for Y falling
 - If A arrives latest: 2τ
 - If B arrives latest: 2.33τ


Choosing inner and outer inputs

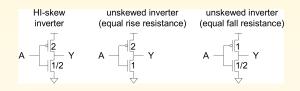
- Outer input is closest to rail (power or ground): B
- Inner input is closest to output: A
- If input arrival time is known
 - Connect latest arriving input to inner terminal

Asymmetric Gates


Asymmetric gates favor one input over another

- Example, suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input
 - So total resistance is same

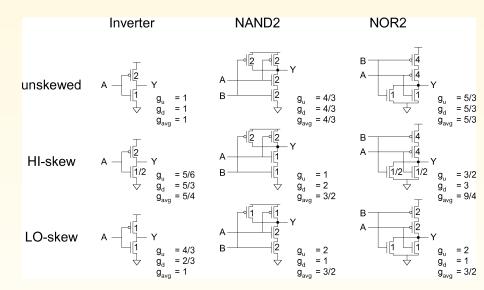
- Calculate logical effort
 - $g_A = 10/9$
 - $g_B = 2$
 - $g_{total} = g_A + g_B = 28/9$
- Symmetric gate approaches g = 1 on critical input
- However, total logical effort goes up


Inputs can be made perfectly symmetric

Make both A and B behave like inner/outer inputs, and keep the P:N ratio $2{:}1$

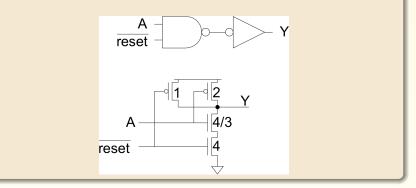
Skewed Gates Favor One Edge Over Another

- Example, suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

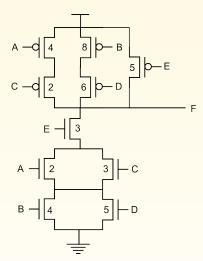

• Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge

• $g_u = 2.5/3 = 5/6;$ $g_d = 2.5/1.5 = 5/3$

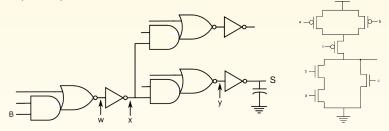
- Definition: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition
- Skewed gates reduce size of noncritical transistors
 - HI-skew gates favor rising output (small nMOS)
 - LO-skew gates favor falling output (small pMOS)
- Logical effort is smaller for favored direction, but larger for the other direction


ECE Department, University of Texas at Austin

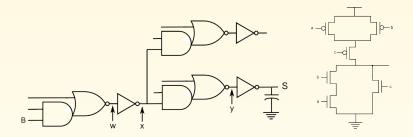
Catalog of Skewed Gates


Combine asymmetric and skewed gates

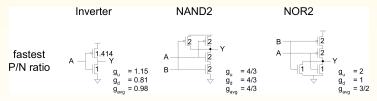
- Downsize noncritical transistor on unimportant input
- Reduces parasitic delay for critical input



Example – I


Find the (worst case) logical efforts of the different inputs in the CMOS circuit below.

(a) Calculate the delay of the segment from B to S of the adder shown below (the AOI21 is a single stage, shown on the right), given that the output capacitance is 25 units (normalized), and the input capacitance at B is 6 units.


Example - II, Cont'd

(b) Calculate the capacitances of the nodes y, x and w, and the resulting widths of the transistors.

Best P/N Ratio

- We have selected P/N ratio for unit rise and fall resistance ($\mu = 2$ -3 for an inverter).
- Alternative: choose ratio for least average delay
 - Example: inverter
 - Delay driving identical inverter
 - $t_{pdf} = (P+1)$
 - $t_{pdr} = (P+1)(\mu/P)$
 - $t_{pd} = (P+1)(1+\mu/P)/2 = (P+1+\mu+\mu/P)/2$
 - Differentiating t_{pd} w.r.t. P, we get, least delay for $P=\sqrt{\mu}$
 - \bullet In general, best P/N ratio is sqrt of that giving equal delay
 - Only improves average delay slightly for inverters
 - But significantly decreases area and power

