

Department of Electrical and Computer Engineering, The University of Texas at Austin J. A. Abraham, September 22, 2020

Full Adder Design I

Brute force implementation from equations $S = A \oplus B \oplus C$ $C_{out} = MAJ(A, B, C)$

Full Adder Design II

ECE Department, University of Texas at A

 $\bullet\,$ Critical path is usually C to C_{out} in ripple adder

2 / 31

Full Adder Design III • Complementary Pass Transistor Logic (CPL) • Slightly faster, but more area В B С В B С $\overline{\mathbf{C}}$ B ē в в Ē в С R B \overline{C} С в B ECE Department, University of Texas at Austin Jacob Abraham, September 22, 2020 5 / 31

4

ECE Department, University of Texas at A

Carry Propagate, Generate, Kill (P, G, K) For a full adder, define what happens to carries • Generate: $C_{out} = 1$, independent of C • $G = A \cdot B$ • **Propagate**: $C_{out} = C$ • $P = A \oplus B$ • Kill: $C_{out} = 0$, independent of C • $K = \overline{A} \cdot \overline{B}$ Generate and Propagate for groups spanning i:j • $G_{i:i} = G_{i:k} + P_{i:k} \cdot G_{k-1:i}$ • $P_{i:j} = P_{i:k} \cdot P_{k-1:j}$ Base Case • $G_{i:i} \equiv G_i = A_i \cdot B_i$, $G_{0:0} = G_0 = C_{in}$ • $P_{i:i} \equiv P_i = A_i \oplus B_i$, $P_{0:0} = P_0 = 0$ • Sum: $S_i = P_i \oplus G_{i-1:0}$ ECE Department, University of Texas at Austin lacob Abraham, September 22, 2020 9 / 31

Department of Electrical and Computer Engineering, The University of Texas at Austin J. A. Abraham, September 22, 2020

Carry-Skip Adder

ECE Department, University of Texas at Austi

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal

Jacob Abraham, September 22, 2020 14 / 31

Carry-Lookahead Adder (CLA)

- Carry-lookahead adder computes $G_{i:0}$ for many bits in parallel
- Uses higher-valency cells with more than two inputs

Carry-Select Adder

- Trick for critical paths dependent on late input X
 - Precompute two possible outputs for X = 0, 1
 - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums for both possible carries into n-bit group

Tree Adders

ECE Department, University of Texas at Austin

- Tree structures can be used to speed up computations
- Look at computing the XOR of 8 bits using 2-input XOR-gates

Many variations on tree adders

Jacob Abraham, September 22, 2020 20 / 31

ECE Department, University of Texas at Austin

Jacob Abraham, September 22, 2020 26 / 31

ECE Department, University of Texas at Au

Jacob Abraham, September 22, 2020 28 / 31

Summary of Adders

ECE Department, University of Texas at Austin

Adder architectures offer area/power/delay tradeoffs Choose the best one for your application

Architecture	Classifi-	Logic lev-	Max.	Tra-	Cells
	cation	els	fanout	cks	
Ripple Carry		N-1	1	1	Ν
Carry-skip(n=4)		N/4 + 5	2	1	1.25N
Carry-inc.(n=4)		N/4 + 2	4	1	2N
Brent-Kung	(L-1,0,0)	$2log_2N-1$	2	1	2N
Sklansky	(0,L-1,0)	log_2N	N/2+1	1	$0.5Nlog_2N$
Kogge-Stone	(0,0,L-1)	log_2N	2	N/2	$Nlog_2N$

Jacob Abraham, September 22, 2020 31 / 31