8. Design of Adders

Jacob Abraham

Department of Electrical and Computer Engineering
The University of Texas at Austin

VLSI Design
Fall 2020

September 22, 2020

Single-Bit Addition

Half Adder

\[S = A \oplus B \]
\[C_{out} = A \cdot B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C_{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Full Adder

\[S = A \oplus B \oplus C \]
\[C_{out} = \text{MAJ}(A, B, C) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>C_{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Full Adder Design I

Brute force implementation from equations

\[S = A \oplus B \oplus C \]
\[C_{out} = \text{MAJ}(A, B, C) \]

Full Adder Design II

- Factor \(S \) in terms of \(C_{out} \)
 \[S = A \cdot B \cdot C + (A + B + C) \cdot \overline{C_{out}} \]
- Critical path is usually \(C \) to \(C_{out} \) in ripple adder
Layout of Full Adder

- Clever layout circumvents usual line of diffusion
 - Use wide transistors on critical path
 - Eliminate output inverters

Full Adder Design III

- Complementary Pass Transistor Logic (CPL)
 - Slightly faster, but more area
Ripple Carry Adder

- Simplest design: cascade full adders
 - Critical path goes from C_{in} to C_{out}
 - Design full adder to have fast carry (small delay for carry signal)

![Ripple Carry Adder Diagram]

Deal with Inversions to Speed Up Carry Path

- Critical path passes through majority gate
 - Built from minority + inverter
 - Eliminate inverter and use inverting full adder

![Deal with Inversions Diagram]
Carry Propagate Adders

- N-bit adder called CPA
 - Each sum bit depends on all previous carries
 - How do we compute all these carries quickly?

Carry Propagate, Generate, Kill (P, G, K)

For a full adder, define what happens to carries

- **Generate**: $C_{out} = 1$, independent of C
 - $G = A \cdot B$
- **Propagate**: $C_{out} = C$
 - $P = A \oplus B$
- **Kill**: $C_{out} = 0$, independent of C
 - $K = \overline{A} \cdot \overline{B}$

Generate and Propagate for groups spanning $i:j$

- $G_{i:j} = G_{i:k} + P_{i:k} \cdot G_{k-1:j}$
- $P_{i:j} = P_{i:k} \cdot P_{k-1:j}$

Base Case

- $G_{i:i} \equiv G_i = A_i \cdot B_i$, $G_{0:0} = G_0 = C_{in}$
- $P_{i:i} \equiv P_i = A_i \oplus B_i$, $P_{0:0} = P_0 = 0$
- Sum: $S_i = P_i \oplus G_{i-1:0}$
Carry Propagate, Generate, Kill (P, G, K)

For a full adder, define what happens to carries
- **Generate**: \(C_{out} = 1 \), independent of C
 - \(G = A \cdot B \)
- **Propagate**: \(C_{out} = C \)
 - \(P = A \oplus B \)
- **Kill**: \(C_{out} = 0 \), independent of C
 - \(K = \overline{A} \cdot \overline{B} \)

Generate and Propagate for groups spanning i:j
- \(G_{i:j} = G_{i:k} + P_{i:k} \cdot G_{k-1:j} \)
- \(P_{i:j} = P_{i:k} \cdot P_{k-1:j} \)

Base Case
- \(G_{i,i} \equiv G_i = A_i \cdot B_i \)
- \(P_{i,i} \equiv P_i = A_i \oplus B_i \)
- \(G_{0:0} = G_0 = C_{in} \)
- \(P_{0:0} = P_0 = 0 \)

Sum: \(S_i = P_i \oplus G_{i-1:0} \)

PG Logic

1: Bitwise PG logic
2: Group PG logic
3: Sum logic
Ripple Carry Adder Revisited in the PG Framework

\[G_{i:0} = G_i + P_i \cdot G_{i-1:0} \]

Ripple Carry PG Diagram

\[t_{ripple} = t_{pg} + (N - 1)t_{AO} + t_{xor} \]
Carry-Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal
Carry-Skip PG Diagram

For \(k \) \(n \)-bit groups \((N = nk) \)
\[
t_{\text{skip}} = t_{\text{pg}} + [2(n - 1) + (k - 1)] t_{\text{AO}} + t_{\text{xor}}
\]

Carry-Lookahead Adder (CLA)

- Carry-lookahead adder computes \(G_{i:0} \) for many bits in parallel
- Uses higher-valency cells with more than two inputs
CLA PG Diagram

Carry-Select Adder

- Trick for critical paths dependent on late input X
 - Precompute two possible outputs for $X = 0, 1$
 - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums for both possible carries into n-bit group
Tree Adders

- Tree structures can be used to speed up computations
- Look at computing the XOR of 8 bits using 2-input XOR-gates

\[\begin{align*}
\text{x}_0 & \rightarrow \text{x}_1 \\
\text{x}_2 & \rightarrow \text{x}_3 \\
\text{x}_4 & \rightarrow \text{x}_5 \\
\text{x}_6 & \rightarrow \text{x}_7 \\
\end{align*} \]

- If lookahead is good for adders, lookahead across lookahead!
 - Recursive lookahead gives $O(\log N)$ delay
- Many variations on tree adders

Brent-Kung Adder
Sklansky Adder

Kogge-Stone Adder
Tree Adder Taxonomy

- Ideal N-bit tree adder would have
 - $L = \log N$ logic levels
 - Fanout never exceeding 2
 - No more than one wiring track between levels
- Describe adder with 3-D taxonomy (l, f, t)
 - Logic levels: $L + l$
 - Fanout: $2f + 1$
 - Wiring tracks: 2^t
- Known tree adders sit on plane defined by $l + f + t = L - 1$
Knowles $[2,1,1,1]$ Adder

Ladner-Fischer Adder
Tree Adder Taxonomy Revisited

![Tree Adder Diagram](image)

Summary of Adders

Adder architectures offer area/power/delay tradeoffs. Choose the best one for your application.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Classification</th>
<th>Logic levels</th>
<th>Max. fanout</th>
<th>Tracks</th>
<th>Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ripple Carry</td>
<td>N - 1</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Carry-skip (n=4)</td>
<td>N/4 + 5</td>
<td>2</td>
<td>1</td>
<td>1.25N</td>
<td></td>
</tr>
<tr>
<td>Carry-inc. (n=4)</td>
<td>N/4 + 2</td>
<td>4</td>
<td>1</td>
<td>2N</td>
<td></td>
</tr>
<tr>
<td>Brent-Kung</td>
<td>(L-1,0,0)</td>
<td>2log₂N - 1</td>
<td>2</td>
<td>2N</td>
<td></td>
</tr>
<tr>
<td>Sklansky</td>
<td>(0,L-1)</td>
<td>log₂N</td>
<td>N/2 + 1</td>
<td>1</td>
<td>0.5Nlog₂N</td>
</tr>
<tr>
<td>Kogge-Stone</td>
<td>(0,0,L-1)</td>
<td>log₂N</td>
<td>2</td>
<td>N/2</td>
<td>Nlog₂N</td>
</tr>
</tbody>
</table>