9. Datapath Design

Jacob Abraham

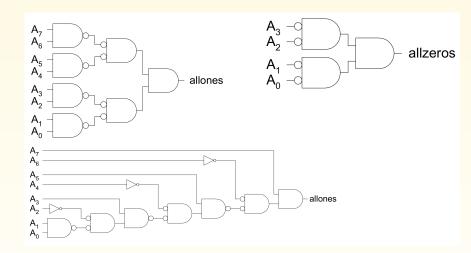
Department of Electrical and Computer Engineering
The University of Texas at Austin

VLSI Design Fall 2020

September 24, 2020

1s and 0s Detectors

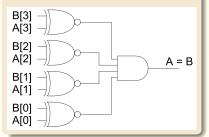
- 1s detector: N-input AND gate
- 0s detector: Inversions + 1s detector (N-input NOR)



Comparators

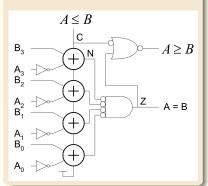
Equality Comparator

- Check if each bit is equal (XNOR, or "equality gate")
- 1s detect on bitwise equality



Magnitude Comparator

- Compute B-A and look at sign
- $B A = B + \overline{A} + 1$
- For unsigned numbers, carry out is sign bit



Signed Versus Unsigned Numbers

- For signed numbers, comparison is harder
 - C: carry out
 - Z: zero (all bits of A-B are 0)
 - N: negative (MSB of result)
 - V: overflow (inputs had different signs, output sign \neq B)

Magnitude Comparison

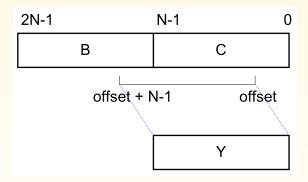
Relation	Unsigned Comparison	Signed Comparison
A = B	Z	Z
$A \neq B$	\overline{Z}	\overline{Z}
A < B	$\overline{C+Z}$	$\overline{(N \oplus V) + Z}$
A > B	\overline{C}	$(N \oplus V)$
$A \leq B$	C	$\overline{(N \oplus V)}$
$A \ge B$	$\overline{C} + Z$	$(N \oplus V) + Z$

Shifters

- Logical Shift:
 - Shifts number left or right and fills with 0s
 - 1011 LSR 1 = 0101
 - 1011 LSL 1 = 0110
- Arithmetic Shift:
 - Shifts number left or right; right shift sign extend
 - 1011 ASR 1 = 1101
 - 1011 ASL 1 = 0110
- Rotate:
 - Shifts number left or right and fills with lost bits
 - 1011 ROR 1 = 1101
 - 1011 ROL 1 = 0111

Funnel Shifter

- A funnel shifter can do all six types of shifts
- Selects N-bit field Y from 2N-bit input
 - Shift by k bits $(0 \le k < N)$



Funnel Shifter Operation

Shift Type	В	С	Offset
Logical Right	00	$A_{N-1}\dots A_0$	k
Logical Left	$A_{N-1}\dots A_0$	00	N-k
Arithmetic Right	$A_{N-1} \dots A_{N-1}$ (sign extension)	$A_{N-1}\dots A_0$	k
Arithmetic Left	$A_{N-1}\dots A_0$	0	N-k
Rotate Right	$A_{N-1}\dots A_0$	$A_{N-1}\dots A_0$	k
Rotate Left	$A_{N-1}\dots A_0$	$A_{N-1}\dots A_0$	N-k

Computing N-k requires an adder

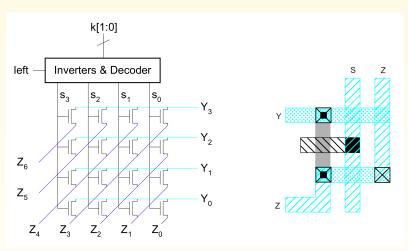
Simplified Funnel Shifter

Optimize down to 2N-1 bit input

Shift Type	Z	Offset
Logical Right	$00, A_{N-1} \dots A_0$	k
Logical Left	$A_{N-1}\dots A_0, 00$	\overline{k}
Arithmetic Right	$A_{N-1}\dots A_{N-1}, A_{N-1}\dots A_0$	k
Arithmetic Left	$A_{N-1} \dots A_0, 00$	\overline{k}
Rotate Right	$A_{N-2}\dots A_0, A_{N-1}\dots A_0$	k
Rotate Left	$A_{N-1}\dots A_0, A_{N-1}\dots A_1$	\overline{k}

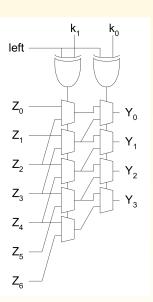
Funnel Shifter Design – 1

- N N-input multiplexers
 - Use 1-of-N hot select signals for shift amount
 - ullet nMOS pass transistor design (Note: V_t drops)



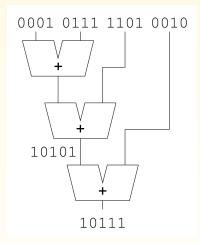
Funnel Shifter Design – 2

- Log N stages of 2-input MUXes
 - No select decoding needed



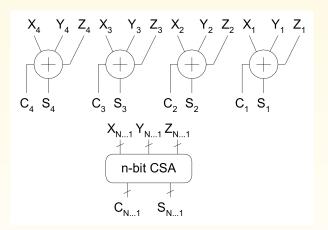
Multi-Input Adders

- Suppose we want to add k N-bit words
 - Example: 0001 + 0111 + 1101 + 0010 = 10111
- Straightforward solution: k-1 N-input CPAs
 - Large and slow



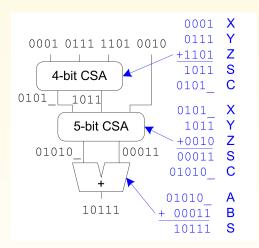
Carry Save Addition

- Full adder sums 3 inputs, produces 2 outputs
 - Carry output has twice the weight of sum output
- N full adders in parallel: carry save adder
 - Produce N sums and N carry outs



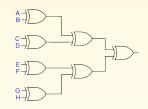
CSA Application

- Use k-2 stages of CSAs
 - Keep result in carry-save redundant form
- Final CPA computes actual result

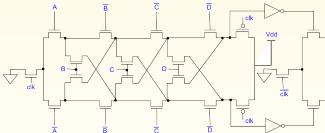


Parity Generators

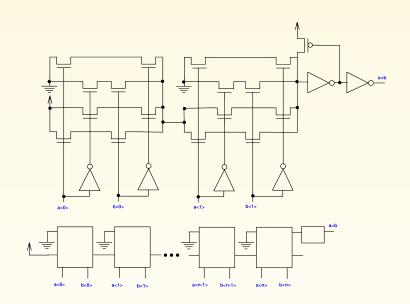
Static XOR Tree



Dynamic XOR Circuit



Pass Gate Comparator



Multiplication

Example:

```
multiplicand
      1100 : 12<sub>10</sub>
      0101 : 5<sub>10</sub>
                                   multiplier
      1100
                                   partial
     0000
                                   products
   1100
 0000
001111\overline{00}
                                   product
```

- M x N-bit multiplication
 - Produce N M-bit partial products
 - Sum these to produce M+N-bit product

General Form for Multiplication

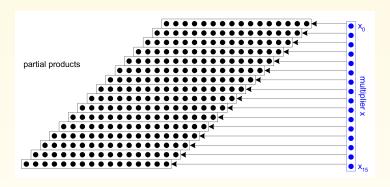
Multiplicand: $Y = (y_{M-1}, y_{M-2}, \dots, y_1, y_0)$ Multiplier: $X = (x_{N-1}, x_{N-2}, \dots, x_1, x_0)$

Product:

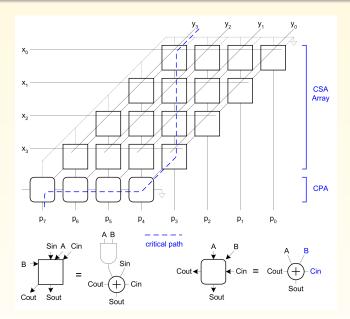
$$P = \left(\sum_{j=0}^{M-1} y_j 2^j\right) \left(\sum_{i=0}^{N-1} x_i 2^i\right) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_i y_j 2^{i+j}$$

Dot Diagram

Each dot represents a bit

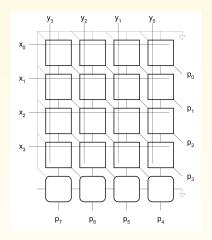


Array Multiplier



Rectangular Array

Squash array to fit rectangular floorplan



Fewer Partial Products – Booth Encoding

- Array multiplier requires N partial products
- ullet If we looked at groups of r bits, we could form N/r partial products
 - Faster and smaller?
 - Called radix- 2^r encoding
- Example, for r = 2, look at pairs of bits
 - Form partial products of 0, Y, 2Y, 3Y
 - First three are easy, but 3Y requires adder
- Is there a way to get 3Y without an addition step?

Booth Encoding

- Instead of 3Y, try -Y, then increment next partial product to add 4Y
- Similarly, for 2Y, try -2Y + 4Y in next partial product

Radix-4 modified Booth encoding value

Inputs		Partial Product	Booth Selects			
x_{2i+1}	x_{2i}	x_{2i-1}	PP_i	X_i	$2X_i$	M_i
0	0	0	0	0	0	0
0	0	1	Y	1	0	0
0	1	0	Y	1	0	0
0	1	1	2Y	0	1	0
1	0	0	-2Y	0	1	1
1	0	1	-Y	1	0	1
1	1	0	-Y	1	0	1
1	1	1	-0(=0)	0	0	1

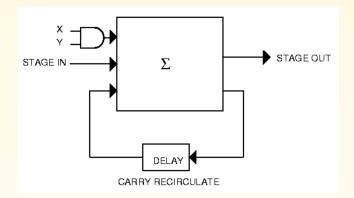
Advanced Multiplication

- Signed vs. unsigned inputs
- Higher radix Booth encoding
- Array vs. tree CSA networks

Serial Multiplication

- Lower area at expense of speed
 - Example, signal processing on bit streams
- Delay for $n \times n$ multiply
 - 2n bit product with 2n bit delay
 - Additional n-bit delay to shift n bits
 - Total delay of 3n bits
- Pipelined multiplier: possible to produce a new 2n bit product every 2n bit times after initial n bit delay
 - Only interest in high-order bits: n bit latency for n bit product
 - Can design for desired throughput

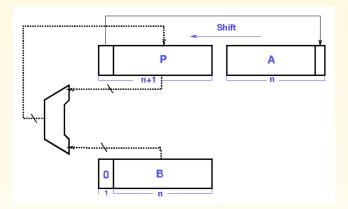
Serial Multiplier Architecture



Area for structure increases linearly with number of bits, n

Pipeline multiplier accumulates partial product sums starting with the least significant partial product (result is n-bit number which is truncated to n-1 bits before the next partial product)

Division



- To divide A by B
 - Shift P and A one bit left
 - Subtract B from P, put the result back
 - If result is negative, additional steps, set low order bits of A to 0, otherwise to 1
 - "restoring" or "non-restoring" division to fix negative result

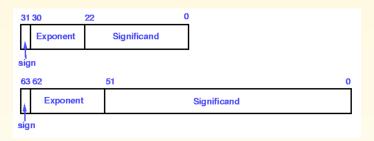
SRT Division

Divide A by B (n-bits)(view numbers as fractions between 1/2 and 1)

- If B has k leading 0s when expressed using n bits, shift all registers by k bits
- ② For i = 0 to (n-1)
 - If top 3 bits of P equal, set $q_i = 0$, shift (P,A) one bit left
 - @ If top 3 bits of P not all equal, and P negative, set $q_i=-1$, (written as $\overline{1}$, shift (P,A) one bit left and add B
 - **3** Otherwise, set $q_i = 1$, shift (P,A) one bit left, subtract B
- If the final remainder is negative, correct by adding B, correct quotient by subtracting 1; finally, shift remainder k bits right

Radix-4 SRT algorithm used in Pentium chip

Floating Point (IEEE 754-1985)



Single precision:

$$N=(-1)^{\mathsf{sign}}\times 1.\mathsf{Significand}\times 2^{\mathsf{Exponent}-127}, 1\leq \mathsf{Exponent}\leq 254$$
 $N=(-1)^{\mathsf{sign}}\times 0.\mathsf{Significand}\times 2^{\mathsf{Exponent}-126}, \mathsf{Exponent}=0$

- "Hidden 1", Bias, Special values NaN, ∞ , $-\infty$
- Rounds to nearest by default, but three other rounding modes
- "Halfway" result rounded to nearest even FP number
- "Denormal" numbers to represent results $< 1.0 \times 2^{Emin}$
- Sophisticated facilities for handling exceptions

Iterative Division

Newtons iteration: finding the 0 of a function

 Starting from a guess for the 0, approximate function by its tangent at the guess, form new guess based on where tangent has a 0

Goldschmidt's method

To compute a/b, iteratively, multiply both numerator and denominator by r where $r\times b=1\,$

Find r iteratively

- ullet Scale the problem so b < 1
- Set $x_0 = a$, $y_0 = b$ and write $b = 1 \delta$ where $|\delta| < 1$
- If we pick $r_0 = 1 + \delta$, then $y_1 = r_0 y_0 = 1 \delta^2$
- Next, pick $r_1 = 1 + \delta^2$, etc., and $y_i \to 1$

Used in the TI 8847 chip and AMD Athlon CPUs