
A Survey of Hybrid
Techniques for
Functional Verification
Jayanta Bhadra and Magdy S. Abadir

Freescale Semiconductor

Li-C. Wang

University of California, Santa Barbara

Sandip Ray

University of Texas at Austin

&THE INCREASING SIZE and complexity of industry

hardware designs, along with stringent time-to-market

requirements, have put a heavy burden on verification

to ensure that designs are relatively bug free. Late

detection of errors typically leads to higher costs due

to associated delays and production losses. Although

bug freedom remains an unfulfilled dream, in industry

practice catching more bugs earlier in the design cycle

is a top priority. Verification techniques that have

matured over the years have addressed the verification

bottleneck—that is, the bug detection problem—to

various levels of satisfaction. A general theme success-

fully adopted by academia as well as several vendors

is to apply multiple verification techniques so that they

complement one another, resulting in an increase of

the verification tool’s overall effectiveness. (The

‘‘Commercial hybrid verification tools’’ sidebar lists

some examples of commercially available tools

offered by various vendors.) Such integration must

be carried out delicately and precisely so that the

overall technique becomes more than merely a sum of

the techniques. In this article, we survey the research

that has taken place in this area.

In industry practice, simulation remains the main-

stay for most real-life verification issues. Simulation’s

scalability, along with its easy applica-

bility to practically any design at almost

every abstraction level, makes it useful

for all verification tasks. When used as

a stand-alone technique, simulation

can detect simple and easy-to-find bugs.

However, over time, its effectiveness in

finding corner-case bugs significantly

decreases because generating stimuli that target

interesting corner cases is difficult. On the other hand,

although traditional formal techniques (broadly,

model checking and theorem proving) can, in

principle, analyze and find all bugs in a design model,

their applicability in practice is limited. The well-

known state explosion problem limits model check-

ing, and the cost of theorem proving is prohibitive

because of the amount of skilled manual guidance it

requires.

We define any verification techniques that don’t fall

under the formal category as informal. Although the

capabilities of formal verification paradigms have

been increasing over time, the need for an immediate

practical solution has increased interest in hybrid

techniques, which combine formal and informal

techniques. The general goal of a typical hybrid

technique is to address the verification bottleneck by

enhancing coverage of the state space traversed.

Taxonomy of hybrid methods
In terms of computational complexity, the verifica-

tion problem ranges from NP-hard to undecidable,

depending on system class, desired properties, and

formal-guarantee strength. Thus, we cannot hope to

112

Editor’s note:

This article surveys recent advances in hybrid approaches for functional

verification. These approaches combine multiple verification techniques so

that they complement one another, resulting in superior verification

effectiveness.

—Tim Cheng, Editor in Chief

Advances in Functional Validation through Hybrid Techniques

0740-7475/07/$25.00 G 2007 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

solve all verification problems efficiently. Hybrid

techniques combine at least two methods, trying to

complement strengths and weaknesses effectively. Dill

famously presented a convincing argument support-

ing hybridization.1 Bartley, Galpin, and Blackmore

made a strong case for combining formal verification

and traditional simulation techniques.2 Through com-

parative analysis, they showed that with the increasing

complexity of the circuit models in question, the most

effective way to deal with complexity is to combine

the strengths of all the techniques. A major challenge

is to ensure that the techniques complement rather

than subvert each other when working in tandem. We

classify hybrid functional-verification methods as

follows:

& methods combining formal and informal tech-

niques,

& methods combining two formal techniques,

& methods combining two informal techniques,

and

& methods combining multiple verification tech-

niques.

Figure 1 illustrates this taxonomy.

Methods combining formal and
informal techniques

Generally, an informal verification technique’s

fundamental goal is to increase design space coverage

and increase the chances of finding design errors.

Because of the inherent incompleteness of informal

techniques, combining one with formal techniques

always yields a technique that is incomplete.

Control space exploration
Some researchers have addressed the problem of

finding bugs and increasing design space coverage

through exploration of control circuits. Iwashita et al.

use a formal finite-state model of microprocessor

control logic to generate functional-test programs

usable with simulation flows.3 The technique enumer-

ates all reachable states of a processor’s pipeline and

automatically generates instruction sequences cover-

ing them. The authors focus on pipeline microarchi-

tecture and generate directed functional tests for

interesting corner cases related to pipeline hazards.

Horowitz et al. published a more generalized tech-

nique that works for a larger set of circuit types.4 This

technique targets error-causing interactions by auto-

113

Figure 1. Hybrid verification techniques.

Commercial hybrid verification tools

Researchers have proposed a wide variety of hybrid

techniques for functional verification. Most vendors have

developed and deployed tools that use hybrid techniques.

Here are some examples:

& Synopsys’ Magellan and Formality: http://www.synopsys.

com/products/solutions/discovery_platform.html.

& Cadence Design Systems’ Incisive: http://www.cadence.

com/products/functional_ver/index.aspx.

& Mentor Graphics’ FormalPro: http://www.mentor.com/

products/fv/product_indes.cfm.

As design size and complexity increase, industry will require

further advances in functional-verification technology to

keep pace.

March–April 2007

matically generating test vectors that make the pro-

cessor exercise all control logic transitions in simula-

tion. The technique doesn’t target particular test cases

but instead aims to enumerate the many improbable

conditions in corner cases to maximize the probability

of exposing bugs through simulation. The authors use

techniques from formal verification to derive transition

tours of a fully enumerated state graph of the

processor’s control logic. Their system works from

a Verilog description of the original machine and has

been used successfully to validate an embedded dual-

issue processor in the node controller of the Stanford

Flash Multiprocessor.

Moundanos, Abraham, and Hoskote also explored

coverage-directed test generation using simulation

and formal techniques,5 in which user-provided inputs

help a tool discover the interesting abstract control

space behaviors of large designs. They presented the

idea of covering an abstract control machine in order

to generate manufacturing test suites that give better

coverage of the original circuit. Ho and Horowitz

present a similar approach.6 They propose a new

coverage analysis method based on projecting a min-

imized-control finite-state graph onto control signals

for the design’s data path. In essence, Moundanos,

Abraham, and Hoskote as well as Ho and Horowitz

propose using a state-and-edge coverage of the

design’s control state graph as coverage metrics to

evaluate how well the original design has been tested.

Both papers propose creating abstractions of the

original design by extracting the design’s control

portion. In contrast, Geist et al. propose constructing

an abstraction that models key features of the original

design.7 Although the two preceding approaches

belong to the same domain—using abstract control

models for test generation—they have a subtle differ-

ence: Ho and Horowitz hint that the control models

could themselves be too large for analysis. To address

the issue, they recognize that all control variables do

not equally affect the design’s behavior, and they

define the concept of a control event to identify an

interesting subset of the control variables. Sumners,

Bhadra, and Abraham extend the work of Moundanos,

Abraham, and Hoskote, proposing abstract control

models that alleviate the state explosion problem by

imposing a less constrained upper bound.8

Directed functional-test generation
An important related area of work is coverage-

driven, directed functional-test generation. Typically,

in an industry setting, verification teams have a set of

conditions to meet before tape out. These conditions

are usually based on a combination of several

coverage metrics, known corner cases, and project

complexity. In most industry design environments, the

verification engineers are typically not required to

write formal properties for system correctness but are

expected to find design errors in the process of

reaching this set of conditions. Directed functional

verification plays an important role in reaching these

conditions. Because of the ineffectiveness of pseudo-

random test generation methods to cover specific

corner cases, engineers generally cannot meet the

needs of directed functional verification through

simulation—especially under stringent time-to-market

requirements. The pioneering work of Geist et al. in

this area leveraged the strength of combining formal

verification with simulation techniques.7 The authors

presented a study of a functional-verification method-

ology using the coverage of formal models to specify

functional tests. They applied this methodology to

a modern superscalar microprocessor and compared

the resulting tests with tests generated by existing

methods. The results showed that hybrid techniques

can indeed improve functional verification.

An argument against some of the earlier methods4–8

is that the step of converting abstract counterexamples

obtained from abstract machines into nonspurious

counterexamples of the original machine can be as

complex as formally verifying the entire original

machine. The designer might be able to suggest how

to perform the expansion, but that makes the methods

partly manual. Ganai et al. proposed a rarity-based

metric for state prioritization that enabled an efficient

directed search of a relatively large state space.9 Later,

Tasiran, Yu, and Batson proposed combining simula-

tion and formal verification with an abstraction

refinement technique using simulation runs in the

large, original design model implementation.10 They

defined a refinement map that linked the simulation

runs in the implementation to state transitions in the

specification. Consequently, a model checker checks

each specification-level state transition for consistency

with the specification. Verification engineers can

obtain error traces at the implementation level from

the reverse map. The scheme also provides useful

coverage information.

Although symbolic simulation is a powerful tech-

nique that can be effective in formal verification of

design models, most real designs are too large and

114

Advances in Functional Validation through Hybrid Techniques

IEEE Design & Test of Computers

complex for pure symbolic techniques. Yuan et al.

used synthesis and verification concepts in a technique

that basically combined formal verification and

simulation to achieve better coverage while validating

larger circuits.11 They also showed that on designs for

which formal verification is effective, hybrid tech-

niques can find bugs far more quickly.

Mishra and Dutt proposed a hybrid technique

addressing functional coverage-directed test genera-

tion for pipelined processors.12 They made three

important contributions. First, they proposed a general

graph-theoretic model that captures the structure and

behavior of a wide variety of pipelined processors.

Second, they proposed a functional fault model that

defines functional coverage for pipelined architectures.

Finally, they presented test generation procedures that

accept the architecture’s graph model as input and

generate directed test programs to detect all of the

functional fault model’s faults. A later technique used

model checking to generate functional tests for

microarchitectural descriptions of processor pipelines.

The technique used an abstract symbolic-model

verifier (SMV) model of a simple MIPS pipeline to

generate directed tests through hybrid verification.

Target corner cases found from pipeline hazard

conditions were written in the form of linear temporal

logic (LTL) properties. Then, the negated version of the

properties was used on the SMV model to get

a witnessing-instruction sequence exhibiting the target

pipeline hazard. Using model checking is admittedly

unrealistic for industrial-strength designs. Therefore,

Koo and Mishra developed a theory of composition for

pipeline models and LTL properties and applied it

through satisfiability (SAT)-based bounded model-

checking (BMC) methods to generate functional tests.13

ATPG and formal techniques
Researchers have explored the hybridization of

ATPG and formal techniques. Traditionally, ATPG

avoids state space explosion by dual justification and

propagation techniques that localize the search in-

stead of dealing with the entire state space at once.

Because formal techniques can address the inherent

incompleteness of ATPG, the two complement each

other effectively.

Jones and Privitera proposed an important hybrid

ATPG-formal technique in the form of automatic

generation of manufacturing test vectors for functional

verification, which gives the advantages of both

random and directed testing.14 The authors showed

that formal specifications can be used as inputs to a test

generator. Successful in dealing with commercial

designs, the technique is a stepping-stone toward

practical formal verification. Ganai et al. experimented

with an effective hybridization of symbolic manipula-

tion and automatic manufacturing test pattern gener-

ation. They proposed a tool called SIVA (Simulation

Verification with Augmentation), which is useful for

coverage-directed state space search on circuit

models.9 The tool successfully integrates simulation

with symbolic techniques for efficient state space

search. The main algorithms combine ATPG and

binary decision diagrams (BDDs) to generate directed

validation test vectors. Researchers also presented

methods for automatically generating lighthouses,

which guide the search toward interesting, hard-to-

reach coverage goals.15 Experimental results showed

that the hybrid technique achieved better coverage

than symbolic techniques or simulation in isolation.

Researchers have also used sequential ATPG for

verifying circuit properties. Its main benefit is that it

requires no explicit storage of states at each time

frame. Boppana et al. suggested using sequential

ATPG for model checking.16 They verified safety

properties and studied the efficiency of sequential

ATPG algorithms for state space exploration. Huan

and Cheng proposed combining structural, word-level,

sequential ATPG techniques with modular, arithmetic,

constraint-solving techniques to check safety proper-

ties.17 They transformed the problem into a counterex-

ample generation problem solved by sequential ATPG.

Hsiao and Jain used simulation-based ATPG along

with genetic algorithms to verify certain safety

properties.18 They made the important observation

that although only value justification is necessary for

checking safety properties, the incomplete but useful

information learned from value propagation can

improve ATPG performance for property checking.

Abraham, Vedula, and Saab proposed an approach

for formally verifying safety and bounded liveness

properties using sequential ATPG.19 Their approach

automatically converts properties into a monitor

circuit with a target fault so that finding a test for the

fault corresponds to formally establishing the property.

Sequential ATPG becomes ineffective on large,

complex circuits. To address this problem, Vedula,

Townsend, and Abraham used a well-known tech-

nique called program slicing to reduce the module

under verification, accelerating sequential ATPG

performance in solving the BMC problem.20

115March–April 2007

State space traversal through heuristics
Researchers have explored hybrid techniques that

address efficient state space traversal through heuristics

quite extensively. Yang and Dill used heuristics to guide

search in relatively large state spaces.21 Their work’s

basic motivation was that formal verification engines

are most useful when they find bugs quickly. Among

their interesting heuristics is target enlargement—

enlarging the error or target state(s) to provide a larger

goal state set. They also used tracks (approximate

preimages), guideposts (designer hints), and Hamming

distance as search metrics. Experimental results showed

a one-third reduction in the state space analyzed. Hu et

al. proposed a similar technique, which uses a form of

overapproximated symbolic image computation to

guide simulation and reach coverage goals.22 Bergmann

and Horowitz combined formal and informal verifica-

tion techniques quite successfully to mitigate the state

space exploration problem.23 They showed that simple,

informal artifacts such as incremental invariants, depth

charts, state charts, and various other path analysis

techniques can make state space search more effective

for large circuits.

Shyam and Bertacco proposed a tool (Guido)

based on a hybrid verification technique that uses

formal methods to guide simulation toward a target.24

It has two unique features. First, it uses circuit structure

to compute a cost function to guide the simulation.

Second, it has a fine-grained sequence controller that

monitors and controls the direction of the simulation

through a combination of randomization and con-

trolled forward movement. Using circuit structure to

compute a cost function is a better way to guide

simulation than using Hamming distance as the cost

function.25 Although Hamming distance is easy to

compute, two states that could be close in Hamming

distance could potentially be far from each other in

the state space, thus misleading the simulation.

Wagner, Bertacco, and Austin proposed a tool

(StressTest) and a related technique that leverage user

inputs in the form of key activity points that must be

stressed and monitored throughout the simulation.26

The idea is similar to that of earlier work.5,8 StressTest

can be effective in finding corner-case design bugs as

well as performance problems. It uses a Markov chain

model based on activity monitors. StressTest is based

on an abstract representation of the input circuit

model. This implies that it is independent of the circuit

implementation. This feature makes the tool more

flexible and portable; but it also burdens the

verification engineer with ensuring that the abstract

model is correct. Otherwise, the tests generated by

StressTest can be incorrect.

Constraint-based verification
Yuan, Pixley, and Aziz invented a set of constraint-

based verification techniques that proved useful in

industrial-strength verification problems.27 In a con-

straint-driven random simulation methodology, the

user provides constraints that characterize correct

interaction between the design under test and its

environment. Using those constraints, tools generate

random stimuli for the design under test. The resultant

stimuli can mimic a legal environment. The user can

also provide biases that cause important corner-case

behaviors to be exercised more thoroughly during

simulation. The beauty of constraint-based verification

is that it can be used in both formal and informal

techniques. Its application base is broad because it

works at the module, block, and unit levels of a design.

Constraints also formally document interfaces to the

design under verification in a machine-readable

manner.

Methods combining formal techniques
Researchers in formal methods have widely recog-

nized the importance of providing a way to combine

disparate tools. Effectively combining theorem proving

and model checking has long been a great challenge

to the research community. Even with continuing

advances in model-checking technology, industrial-

scale verification efforts immediately encounter limits

on model-checking capacity. Using theorem proving

to compose verification results offers the possibility of

ameliorating some of these limits, without decompos-

ing the next-state functions used by the model

checker. Therefore, the associated composition theory

is relatively simple. Although the basic idea is arguably

simple, implementing this mutually complementary

technology is quite challenging.

Trajectory evaluation and
theorem proving

Joyce and Seger experimented with combining

trajectory evaluation with theorem proving. They used

trajectory evaluation as a decision procedure for the

higher-order logic (HOL) proof system.28 They ob-

served that most user interaction occurs with the

model checker, not the proof system. Therefore, using

a model checker as the decision procedure in a proof

116

Advances in Functional Validation through Hybrid Techniques

IEEE Design & Test of Computers

system does not result in an effective hardware

verification environment. Eventually, Hazelhurst and

Seger developed VossProver as an experiment in

implementing a lightweight proof tool on top of

trajectory evaluation. They used symbolic trajectory

evaluation (STE) to prove a circuit’s low-level proper-

ties, and combined these properties to prove the top-

level specification through a mechanical theorem

prover. The technique’s usefulness was demonstrated

when Hazelhurst and Seger verified a 64-bit integer

multiplier and later when Aagaard and Seger verified

a pipelined, IEEE-compliant floating-point multi-

plier.29,30 Aagaard, Jones, and Seger verified an in-

struction-length marker against an implementation-

independent specification of the IA-32 architecture

instruction lengths.31

Later, Forte, a formal verification environment that

combines STE with lightweight theorem proving in

HOL, showed that this methodology can be useful in

an industrial-scale verification environment.32 The

methodology is tightly integrated with FL (a strongly

typed, higher-order, general-purpose functional pro-

gramming language), enabling the verification envi-

ronment to be customized and large proof efforts to be

organized and scripted effectively. Additionally, FL

serves as a specification language at a level well above

the temporal-logic specification used in the STE runs.

Combining theorem provers and
decision procedures

A proposal for so-called interface logics discusses

some early ideas for combining different theorem

provers.33 The goal was to connect automated

reasoning tools by defining a single logic L such that

the logic of each individual tool can be viewed as

sublogics of L. More recently, with the success of

model checkers and Boolean SAT solvers, there has

been significant interest in connecting theorem

provers with decision procedures as well. Modern

theorem provers such as the Prototype Verification

System (PVS),34 Isabelle,35 HOL,36 and ACL2 (A

Computational Logic for Applicative Common Lisp)37

implement connections with external deduction tools.

PVS provides connections with model checkers and

SAT solvers.38 Isabelle uses external tools as oracles for

checking formulas as theorems during a proof search,

and it has been used to integrate model checkers and

arithmetic decision procedures.39,40

Connecting external tools with the HOL family of

theorem provers is one of the goals of the Prosper

Project, which uses the HOL98 theorem prover as

a uniform, logic-based coordination mechanism

between several verification tools.41 HOL4, the latest

incarnation of the family, uses an external oracle

interface to decide large Boolean formulas through

connections to state-of-the-art BDD and SAT-solving

libraries.42 It also uses an oracle interface to connect to

ACL2.43 There has been independent research on

building sound connections between ACL2 and model

checkers and SAT solvers. Ray, Matthews, and Tuttle

integrate ACL2 with SMV.44 Reeber and Hunt connect

ACL2 with the Zchaff SAT solver.45 Sawada and Reeber

provide a connection between ACL2 and IBM’s

general-purpose transformation-based verification

tool, SixthSense,46 to verify an industry floating-point

multiplier design.47 Manolios and Srinivasan connect

ACL2 with Uclid.48

In implementing connections between two formal

tools, soundness guarantees provided by their combi-

nation are of obvious importance. Most of the

interfaces just mentioned involve a form of trust tag

that indicates that the validity of results certified by the

combined tools relies on the soundness of all the

individual tools and their integration. In HOL and

Isabelle, the tag is a logical construct introduced as

a hypothesis of each certified formula.49 ACL2 imple-

ments tagging at the level of definition and theorem

files.50 There has also been work on using an external

tool to search for a proof that the theorem prover can

check without assistance from the tool. Hurd describes

such an interface that connects HOL with first-order

logic.51 McCune and Shumsky present a system called

Ivy that uses the Otter theorem prover to search for

first-order proofs of formulas in equational theories,

and then invokes ACL2 to check the proof objects.52

Composition of model-checking runs
Other notable work on hybrid formal techniques

involves composition of several model-checking runs.

Camilleri used a theorem prover in conjunction with

a model checker to verify a cache coherence

protocol.53 Separate tools were used to verify different

properties, but the results were not combined

mechanically. Jang et al. used computation tree logic

(CTL) model checking to verify a set of properties on

an embedded microcontroller.54 The proof of the top-

level specification was achieved through a composi-

tional argument using the properties but was not

mechanized through a theorem prover.

117March–April 2007

Predicate abstractions
Another hybrid formal approach is the use of

predicate abstraction to prove invariants of system

implementations.55 Predicate abstraction is a form of

abstract interpretation in which, given a set of

predicates P, an abstract transition relation is con-

structed that stipulates how each predicate in P is

updated at each concrete transition.56 The abstract

system is a conservative approximation of the

concrete design. The method combines formal tools

in the following manner. Determining the transition

relation involves the use of validity checks, typically

with a theorem prover or SAT solver, and exploring the

abstract system reduces to a reachability analysis

problem for a model checker to perform. The research

challenges include discovering an appropriate set of

predicates and reducing the number of validity checks

for constructing the abstract transition relation. Re-

searchers have addressed predicate discovery with

refinement guided by counterexamples and effective

use of search.57 One promising approach, developed

by Namjoshi and Kurshan, involves computing a fix-

point over the weakest liberal precondition starting

with an initial set of predicates.58 This method has

been used with indexed predicate discovery in Uclid,59

and also forms the basis of a rewrite-based predicate

abstraction approach implemented in ACL2.60 Re-

searchers have reduced validity checks through

effective representation of the abstract models61 and

the use of expressive, quantified predicates.59,60

Combining two model-checking
techniques

Hazelhurst et al. proposed a tool (MIST) that

hybridizes two model-checking techniques. The tool

enables a handshake between STE and SMC—either

BDD- or SAT-based.62 Model checking is effective in

proving that a property holds on a circuit model but is

generally capacity-constrained by the state explosion

problem. MIST addresses SMC’s state initialization

problem and is especially useful for circuit instances

that have complex initialization sequences. MIST uses

STE to automatically obtain these complex, symbolic

initial states. STE is a natural choice for this application

because of the inherent abstraction provided by the

antecedent of the initial formula used, even when the

original circuit is large and complex. Once the initial

set of states is obtained with STE, the tool can use SMC

to check the property on the original circuit model.

MIST enhances SMC’s capacity and performance;

helps the debugging process by letting the verifier

focus on critical, error-prone areas; and makes the

initialization process more efficient.

Methods combining informal techniques
Kuehlmann et al. reported a guiding algorithm that

uses probabilistic techniques.63 It assigns each design

state a probability based on the likelihood of the state’s

leading to a target state. The algorithm allocates a set

of ranks to the design states according to the assigned

probabilities. Guided-search algorithms use the rank-

ing system to find a path from the starting states to one

of the target states. These algorithms could act as good

complements to existing hybrid techniques for state

space search. However, because the probability

values are assigned by approximate analysis, there is

no apparent mechanism to avoid dead-end states.

Yuan et al. introduced the concept of input biasing,

which can be considered a probabilistic constraint.64

Input biasing makes it easier to cover interesting

corner cases. The researchers proposed using con-

straints and biasing to form a simulation environment

instead of using an explicit testbench in hierarchical

functional verification. The method unified the

handling of biases and constraints through BDDs.

Researchers have also proposed several learning-

based techniques. Various coverage-directed functional-

verification schemes from IBM have proven effective

for addressing large-scale verification problems. One

method uses computer learning and Bayesian net-

works.65 Shimizu and Dill describe coverage-directed

informal methods that use formal descriptions for

collecting coverage information and deriving simula-

tion inputs.66 The description is a list of interface prop-

erties describing a bus protocol. The cache coherence

protocol specification is cycle accurate and is in the

form of RTL interface specifications. However, the

drawback of these techniques is that the properties

described are localized in time; for example, proper-

ties cannot express constraints on bus protocol trans-

actions.

Tasiran et al. proposed a novel coverage metric—

tag coverage—which addresses a major weakness of

the code coverage metric by augmenting it with an

observability measure.67 The tag coverage metric

considers a code segment in the model to be covered

only when it has executed, and the execution’s effect

is recorded at one of the points in the circuit under

observation. The authors use the tag coverage

measure to guide a semiformal functional-test-genera-

118

Advances in Functional Validation through Hybrid Techniques

IEEE Design & Test of Computers

tion algorithm as it selects probability distributions for

biased random-input-pattern generation covering tar-

geted portions of the state space. The algorithm is

based on an approximate analysis of the circuit

modeled as a Markov chain in the steady state.

Methods combining multiple techniques
The first successful attempt to combine several

disparate but cooperative verification techniques into

a single hybrid technique was Ketchum by Ho et al.68

This tool improved traditional simulation techniques by

using capabilities such as test pattern generation and

nonreachability analysis. Ketchum combines simulation

with multiple formal methods, including symbolic

simulation, SAT-based BMC, symbolic fixpoint compu-

tation, and automatic abstraction. It also addresses the

design engineer’s requirements by enabling simulation

monitors. Nonreachability analysis helps design engi-

neers focus on coverage issues far earlier in the design

cycle. The tool interleaves random simulation with

symbolic simulation to expose buggy behavior in deep

circuit blocks. Additionally, by performing reachability

analysis on an abstract design, the tool rules out

unreachable configurations, thus pruning the explored

state space. Ho et al. reported that Ketchum’s effective

hybrid technique provides a tenfold capacity enhance-

ment compared to previous results. The hybrid func-

tional-test-generation algorithms of Ketchum and SIVA9

are generally considered to be in the same domain

because both tools interleave simulation and formal

engines to reach coverage goals. However, there are

some differences. First, SIVA uses ATPG and symbolic

image computation, whereas Ketchum uses symbolic

simulation and SAT-based BMC. Second, SIVA max-

imizes toggle coverage, whereas Ketchum can take

advantage of arbitrary simulation checkers. Third,

because SIVA doesn’t use a single simulation trace but

rather computes a search tree, Ketchum has an

advantage over SIVA in the simulation phase.

FUTURE AVENUES for increasing tool capacity and

accuracy might include developing new verification

procedures better optimized to use adaptive tech-

niques, and seamlessly addressing various subpro-

blems to synergistically solve the overall verification

challenge. This can be achieved through hybrid tools

that perform finer-grained handshakes between vari-

ous tools to provide features such as circuit preanalysis

for activating various verification engines, on-the-fly

interaction between verification techniques, and re-

alistic user guidance. &

Acknowledgments
Sandip Ray is partially supported by DARPA and

the National Science Foundation under grant CNS-

0429591.

&References

1. D.L. Dill, ‘‘What’s Between Simulation and Formal

Verification?’’ Proc. 35th Design Automation Conf. (DAC

98), ACM Press, 1998, pp. 328-329.

2. M.G. Bartley, D. Galpin, and T. Blackmore, ‘‘A

Comparison of Three Verification Techniques: Directed

Testing, Pseudo-Random Testing and Property

Checking,’’ Proc. 39th Design Automation Conf. (DAC

02), ACM Press, 2002, pp. 819-823.

3. H. Iwashita et al., ‘‘Automatic Test Program Generation

for Pipelined Processors,’’ Proc. IEEE/ACM Int’l Conf.

Computer-Aided Design (ICCAD 94), IEEE Press, 1994,

pp. 580-583.

4. M.A. Horowitz et al., ‘‘Architecture Validation for

Processors,’’ Proc. 22nd Ann. Int’l Symp. Computer

Architecture (ISCA 95), IEEE CS Press, 1995, pp.

404-413.

5. D. Moundanos, J.A. Abraham, and Y.V. Hoskote,

‘‘Abstraction Techniques for Validation Coverage

Analysis and Test Generation,’’ IEEE Trans. Computers,

vol. 47, no. 1, Jan. 1998, pp. 2-14.

6. R.C. Ho and M.A. Horowitz, ‘‘Validation Coverage

Analysis for Complex Digital Designs,’’ Proc. Int’l Conf.

Computer-Aided Design (ICCAD 96), IEEE CS Press,

1996, pp. 146-153.

7. D. Geist et al., ‘‘Coverage-Directed Test Generation

Using Symbolic Techniques,’’ Proc. 1st Int’l Conf. Formal

Methods in Computer-Aided Design, LNCS 1166,

Springer-Verlag, 1996, pp. 143-158.

8. R. Sumners, J. Bhadra, and J. Abraham, ‘‘Automatic

Validation Test Generation Using Extracted Control

Models,’’ Proc. 13th Int’l Conf. VLSI Design (VLSID 00),

IEEE CS Press, 2000, pp. 312-320.

9. M. Ganai et al., ‘‘SIVA: A System for Coverage-Directed

State Space Search,’’ J. Electronic Testing: Theory and

Applications, vol. 17, no. 1, Feb. 2001, pp. 11-27.

10. S. Tasiran, Y. Yu, and B. Batson, ‘‘Linking Simulation

with Formal Verification at a Higher Level,’’ IEEE Design

& Test, vol. 21, no. 6, Nov.–Dec. 2004, pp. 472-482.

11. J. Yuan et al., ‘‘On Combining Formal and Informal

Verification,’’ Proc. 9th Int’l Conf. Computer-Aided

119March–April 2007

Verification, LNCS 1254, Springer-Verlag, 1997, pp.

376-387.

12. P. Mishra and N. Dutt, ‘‘Functional Coverage Driven Test

Generation for Validation of Pipelined Processors,’’ Proc.

Design, Automation and Test in Europe (DATE 05), IEEE

CS Press, vol. 2, 2005, pp. 678-683.

13. H.-M. Koo and P. Mishra, ‘‘Test Generation Using SAT-

Based Bounded Model Checking for Validation of

Pipelined Processors,’’ Proc. 16th ACM Great Lakes

Symp. VLSI (GLSVLSI 06), ACM Press, 2006, pp.

362-365.

14. K.D. Jones and J.P. Privitera, ‘‘The Automatic

Generation of Functional Test Vectors for Rambus

Designs,’’ Proc. 33rd Design Automation Conf. (DAC 96),

ACM Press, 1996, pp. 415-420.

15. P. Yalagandula, A. Aziz, and V. Singhal, ‘‘Automatic

Lighthouse Generation for Directed State Space

Search,’’ Proc. Design, Automation and Test in Europe

(DATE 00), IEEE CS Press, 2000, pp. 237-242.

16. V. Boppana et al., ‘‘Model Checking Based on Sequential

ATPG,’’ Proc. 11th Int’l Conf. Computer Aided

Verification, LNCS 1633, Springer, 1999, pp. 418-430.

17. C.-Y. Huan and K.-T. Cheng, ‘‘Using Word-Level ATPG

and Modular Arithmetic Constraint-Solving Techniques

for Assertion Property Checking,’’ IEEE Trans.

Computer-Aided Design of Integrated Circuits and

Systems, vol. 20, no. 3, Mar. 2001, pp. 381-391.

18. M. Hsiao and J. Jain, ‘‘Practical Use of Sequential ATPG

for Model Checking: Going the Extra Mile Does Pay Off,’’

Proc. 6th IEEE Int’l High-Level Design Validation and

Test Workshop (HLDVT 01), IEEE CS Press, 2001, pp.

39-44.

19. J.A. Abraham, V.M. Vedula, and D.G. Saab, ‘‘Verifying

Properties Using Sequential ATPG,’’ Proc. Int’l Test

Conf. (ITC 02), IEEE CS Press, 2002, pp. 194-202.

20. V.M. Vedula, W.J. Townsend, and J.A. Abraham,

‘‘Program Slicing for ATPG-Based Property Checking,’’

Proc. 17th Int’l Conf. VLSI Design (VLSID 04), IEEE CS

Press, 2004, pp. 591-596.

21. C.H. Yang and D.L. Dill, ‘‘Validation with Guided Search

of the State Space,’’ Proc. 35th Design Automation Conf.

(DAC 98), ACM Press, 1998, pp. 599-604.

22. A.J. Hu et al., ‘‘Approximate Reachability with BDDs

Using Overlapping Projections,’’ Proc. 35th Design

Automation Conf. (DAC 98), ACM Press, 1998, pp.

451-456.

23. J.P. Bergmann and M.A. Horowitz, ‘‘Improving Coverage

Analysis and Test Generation for Large Designs,’’ Proc.

Int’l Conf. Computer-Aided Design (ICCAD 99), IEEE CS

Press, 1999, pp. 580-583.

24. S. Shyam and V. Bertacco, ‘‘Distance-Guided Hybrid

Verification with GUIDO,’’ Proc. Design, Automation and

Test in Europe (DATE 06), European Design and

Automation Assoc, vol. 1, 2006, pp. 1211-1216.

25. M.K. Ganai, A. Aziz, and A. Kuehlmann, ‘‘Enhancing

Simulation with BDDs and ATPG,’’ Proc. 36th Ann.

Design Automation Conf. (DAC 99), ACM Press, 1999,

pp. 385-390.

26. I. Wagner, V. Bertacco, and T. Austin, ‘‘StressTest: An

Automatic Approach to Test Generation via Activity

Monitors,’’ Proc. 42nd Design Automation Conf. (DAC

05), ACM Press, 2005, pp. 783-788.

27. J. Yuan, C. Pixley, and A. Aziz, Constraint-Based

Verification, Springer, 2006.

28. J.J. Joyce and C.H. Seger, ‘‘Linking BDD-Based

Symbolic Evaluation to Interactive Theorem Proving,’’

Proc. 30th Design Automation Conf. (DAC 93), ACM

Press, 1993, pp. 469-474.

29. S. Hazelhurst and C.-J.H. Seger, ‘‘A Simple Theorem

Prover Based on Symbolic Trajectory Evaluation and

BDDs,’’ IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 14, no. 4, Apr.

1995, pp. 413-422.

30. M.D. Aagaard and C.-J.H. Seger, ‘‘The Formal

Verification of a Pipelined Double-Precision IEEE

Floating-Point Multiplier,’’ Proc. Int’l Conf. Computer-

Aided Design (ICCAD 95), IEEE CS Press, 1995, pp.

7-10.

31. R.B. Jones, C.-J.H. Seger, and M. Aagaard, ‘‘Combining

Theorem Proving and Trajectory Evaluation in an

Industrial Environment,’’ Proc. 35th Design Automation

Conf. (DAC 98), ACM Press, 1998, pp. 538-541.

32. C.-J.H. Seger et al., ‘‘An Industrially Effective

Environment for Formal Hardware Verification,’’ IEEE

Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 24, no. 9, Sept. 2005, pp. 1381-1405.

33. J.D. Guttman, A Proposed Interface Logic for Verification

Environments, tech. report M-91-19, Mitre, 1991.

34. S. Owre, J. Rushby, and N. Shankar, ‘‘PVS: A Prototype

Verification System,’’ Proc. 11th Int’l Conf. Automated

Deduction (CADE-11), LNCS 607, Springer, 1992, pp.

748-752.

35. T. Nipkow, L. Paulson, and M. Wenzel, Isabelle/HOL:

A Proof Assistant for Higher-Order Logic, LNCS 2283,

Springer-Verlag, 2002.

36. M.J.C. Gordon, and T.F. Melham, eds., Introduction to

HOL: A Theorem Proving Environment for Higher-Order

Logic, Cambridge Univ. Press, 1993.

37. M. Kaufmann, P. Manolios, and J. Moore, Computer-

Aided Reasoning: An Approach, Kluwer Academic, 2000.

120

Advances in Functional Validation through Hybrid Techniques

IEEE Design & Test of Computers

38. N. Shankar, ‘‘Using Decision Procedures with a Higher-

Order Logic,’’ Proc. 14th Int’l Conf. Theorem Proving in

Higher-Order Logics (TPHOLs 01), LNCS 2152,

Springer, 2001, pp. 5-26.

39. O. Müller and T. Nipkow, ‘‘Combining Model Checking and

Deduction of I/O Automata,’’ Proc. 1st Workshop Tools

and Algorithms for the Construction and Analysis of

Systems, LNCS 1019, Springer-Verlag, 1995, pp. 1-16.

40. D. Basin and S. Friedrich, ‘‘Combining WS1S and HOL,’’

Frontiers of Combining Systems 2, D.M. Gabbay, and M.

de Rijke, eds., Research Studies Press/Wiley, 2000.

41. L.A. Dennis et al., ‘‘The PROSPER Toolkit,’’ Proc. Int’l

Conf. Tools and Algorithms for Constructing Systems

(TACAS 00), LNCS 1831, Springer-Verlag, 2000, pp.

78-92.

42. M.J.C. Gordon, ‘‘Programming Combinations of

Deduction and BDD-Based Symbolic Calculation,’’

London Mathematical Society J. Computation and

Mathematics, vol. 5, Aug. 2002, pp. 56-76.

43. M.J.C. Gordon et al., ‘‘An Integration of HOL and ACL2,’’

Proc. Formal Methods in Computer-Aided Design

(FMCAD 06), IEEE CS Press, 2006, pp. 153-160.

44. S. Ray, J. Matthews, and M. Tuttle, ‘‘Certifying

Compositional Model Checking Algorithms in ACL2,’’

Proc. 4th Int’l Workshop ACL2 Theorem Prover and Its

Applications, ACL2 Steering Committee, 2003, http://

www.cs.utexas.edu/users/moore/acl2/workshop-2003.

45. E. Reeber and W.A. Hunt Jr., ‘‘A SAT-Based Decision

Procedure for the Subclass of Unrollable List Formulas in

ACL2 (SULFA),’’ Proc. 3rd Int’l Joint Conf. Automated

Reasoning (IJCAR 06), LNCS 4130, Springer, 2006, pp.

453-467.

46. H. Mony et al., ‘‘Scalable Automated Verification via

Expert-System Guided Transformations,’’ Proc. 5th Int’l

Conf. Formal Methods in Computer-Aided Design

(FMCAD 04), LNCS 3312, Springer, 2004, pp. 159-173.

47. J. Sawada and E. Reeber, ‘‘ACL2SIX: A Hint Used to

Integrate a Theorem Prover and an Automated Verifi-

cation Tool,’’ Proc. Formal Methods in Computer-Aided

Design (FMCAD 06), IEEE CS Press, 2006, pp. 161-170.

48. P. Manolios and S.K. Srinivasan, ‘‘Refinement Maps for

Efficient Verification of Processor Models,’’ Proc. Design,

Automation and Test in Europe (DATE 05), IEEE CS

Press, vol. 2, 2005, pp. 1304-1309.

49. E.L. Gunter, ‘‘Adding External Decision Procedures to

HOL90 Securely,’’ Proc. 11th Int’l Conf. Theorem Proving

in Higher-Order Logics (TPHOLs 98), LNCS 1479,

Springer, 1998, pp. 143-152.

50. M. Kaufmann et al., ‘‘Integrating External Deduction

Tools with ACL2,’’ Proc. 6th Int’l Workshop

Implementation of Logics (IWIL 06), CEUR Workshop

Proceedings, 2006, pp. 7-26.

51. J. Hurd, ‘‘An LCF-Style Interface between HOL and First-

Order Logic,’’ Proc. 18th Int’l Conf. Automated Deduction

(CADE-18), LNCS 2392, Springer, 2002, pp. 134-138.

52. W. McCune and O. Shumsky, ‘‘Ivy: A Preprocessor and

Proof Checker for First-Order Logic,’’ Computer-Aided

Reasoning: ACL2 Case Studies, P. Manolios, M.

Kaufmann, and J.S. Moore, eds., Kluwer Academic,

2000, pp. 217-230.

53. A. Camilleri, ‘‘A Hybrid Approach to Verifying Liveness in

a Symmetric Multi-Processor,’’ Proc. 10th Int’l Conf.

Theorem Proving in Higher-Order Logics (TPHOLs 97),

LNCS 1275, Springer, 1997, pp. 33-48.

54. J.-Y. Jang et al., ‘‘Formal Verification of FIRE: A Case

Study,’’ Proc. 34th Design Automation Conf. (DAC 97),

ACM Press, 1997, pp. 173-177.

55. S. Graf and H. Saidi, ‘‘Construction of Abstract State

Graphs with PVS,’’ Proc. 9th Int’l Conf. Computer-Aided

Verification, LNCS 1254, Springer-Verlag, 1997, pp. 72-83.

56. P. Cousot and R. Cousot, ‘‘Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by

Approximation or Analysis of Fixpoints,’’ Proc. 4th ACM

SIGACT-SIGPLAN Symp. Principles of Programming

Languages (POPL 77), ACM Press, 1977, pp. 238-252.

57. S. Das and D.L. Dill, ‘‘Counter-Example Based Predicate

Discovery in Predicate Abstraction,’’ Proc. 4th Int’l Conf.

Formal Methods in Computer-Aided Design (FMCAD

02), LNCS 2517, Springer, 2002, pp. 19-32.

58. K.S. Namjoshi and R.P. Kurshan, ‘‘Syntactic Program

Transformations for Automatic Abstraction,’’ Proc. 12th

Int’l Conf. Computer-Aided Verification (CAV 00), LNCS

1855, Springer, 2000, pp. 435-449.

59. S. Lahiri and R.E. Bryant, ‘‘Indexed Predicate Discovery

for Unbounded System Verification,’’ Proc. 16th Int’l

Conf. Computer-Aided Verification (CAV 04), LNCS

3114, Springer, 2004, pp. 135-147.

60. S. Ray and R. Sumners, ‘‘Combining Theorem Proving with

Model Checking through Predicate Abstraction,’’ IEEE

Design & Test, vol. 24, no. 2, Mar.-Apr. 07, pp. 132-139.

61. S.K. Lahiri, R.E. Bryant, and B. Cook, ‘‘A Symbolic

Approach to Predicate Abstraction,’’ Computer-Aided

Verification, LNCS 2725, LNCS, 2003, pp. 141-153.

62. S. Hazelhurst et al., ‘‘A Hybrid Verification Approach: Getting

Deep into the Design,’’ Proc. 39th Design Automation

Conf. (DAC 02), ACM Press, 2002, pp. 111-116.

63. A. Kuehlmann, K.L. McMillan, and R.K. Brayton,

‘‘Probabilistic State Space Search,’’ Proc. Int’l Conf.

Computer-Aided Design (ICCAD 99), IEEE CS Press,

1999, pp. 574-579.

121March–April 2007

64. J. Yuan et al., ‘‘Modeling Design Constraints and Biasing

in Simulation Using BDDs,’’ Proc. Int’l Conf. Computer-

Aided Design (ICCAD 99), IEEE CS Press, 1999, pp.

584-590.

65. S. Fine and A. Ziv, ‘‘Coverage Directed Test Generation

for Functional Verification Using Bayesian Networks,’’

Proc. 40th Design Automation Conf. (DAC 03), ACM

Press, 2003, pp. 286-291.

66. K. Shimizu and D.L. Dill, ‘‘Deriving a Simulation Input

Generator and a Coverage Metric from a Formal

Specification,’’ Proc. 39th Design Automation Conf.

(DAC 02), ACM Press, 2002, pp. 801-806.

67. S. Tasiran et al., ‘‘A Functional Validation Technique:

Biased-Random Simulation Guided by Observability-

Based Coverage,’’ Proc. IEEE Int’l Conf. Computer

Design (ICCD 01), IEEE CS Press, 2001, pp.

82-88.

68. P.-H. Ho et al., ‘‘Smart Simulation Using Collaborative

Formal and Simulation Engines,’’ Proc. Int’l Conf.

Computer-Aided Design (ICCAD 00), IEEE CS Press,

2000, pp. 120-126.

Sandip Ray is a postdoctoral fellow

in the Department of Computer

Sciences of the University of Texas

at Austin. His research interests in-

clude formal methods (particularly the

effective combination of theorem proving and algo-

rithmic decision procedures to increase the capacity

of formal verification for large-scale systems), distrib-

uted systems, complexity theory, algorithm design,

model checking, and logic. Ray has a BS in computer

science from Jadavpur University, Calcutta, India, an

MS in computer science from the Indian Institute of

Science, Bangalore, India, and a PhD in computer

science from the University of Texas at Austin.

&Direct questions and comments about this article to

Jayanta Bhadra, Freescale Semiconductor, 7700 W.

Parmer Lane, MD PL34, Austin, TX 78729; jayanta.

bhadra@freescale.com.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.org/

publications/dlib.

122

The biographies of Jayanta Bhadra, Magdy S.

Abadir, and Li-C. Wang are on p. 111 of this issue.

Advances in Functional Validation through Hybrid Techniques

IEEE Design & Test of Computers

